» » » Ричард Фейнман - 3. Излучение. Волны. Кванты


Авторские права

Ричард Фейнман - 3. Излучение. Волны. Кванты

Здесь можно скачать бесплатно "Ричард Фейнман - 3. Излучение. Волны. Кванты" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
3. Излучение. Волны. Кванты
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "3. Излучение. Волны. Кванты"

Описание и краткое содержание "3. Излучение. Волны. Кванты" читать бесплатно онлайн.








§ 7. Поле системы осцилляторов, расположенных на плоскости

Предположим, что имеется некоторая плоскость, которую за­полняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достаточно большом расстоянии от плоскости? (Мы не можем выбрать точку наблюдения очень близко от плос­кости, потому что у нас нет точных формул для поля вблизи источников.) Пусть плоскость зарядов совпадает с плоскостью XY и нас интересует поле в точке Р, лежащей на оси z, достаточ­но далеко от плоскости (фиг. 30.10). Предположим, что число зарядов на единичной площадке равно n, а величина каждого заряда д. Все заряды совершают одинаковые гармонические колебания в одном и том же направлении, с той же амплитудой и фазой. Смещение заряда из его среднего положения описы­вается функцией x0coswt. Вводя комплексную амплитуду, действительная часть которой дает реальное движение, будем описывать колебание заряда функцией x0eiwt.

Чтобы найти поле, создаваемое всеми зарядами в точке Р, нужно вычислить сначала поле отдельного заряда q, а затем сложить поля всех зарядов. Как известно, поле излучения про­порционально ускорению заряда, т. е.. — w2x0еiwt (и одинаково для всех зарядов). Электрическое поле в точке Р, создаваемое зарядом в точке Q, пропорционально ускорению заряда q, нужно только помнить, что поле в точке Р в момент времени t определяется ускорением заряда в более ранний момент времени t' =t-r/c, где r/c — время, за которое волна проходит расстояние от Q до Р. Поэтому поле в точке Рпропорционально

(30.10)

Фиг. 30.10. Поле излучения ос­циллирующих зарядов, заполняю­щих плоскость.

Подставляя это значение ускорения в формулу для поля, соз­даваемого зарядом на большом расстоянии, получаем

Однако эта формула не совсем правильна, поскольку нужно брать не все ускорение целиком, а его компоненту, перпендику­лярную линии QP. Мы предположим, однако, что точка Рнахо­дится от плоскости намного дальше, чем точка Q от оси z (рас­стояние r на фиг. 30.10), так что для эффектов, которые мы хо­тим учесть, косинус можно заменить единицей (косинус и так довольно близок к единице).

Полное поле в точке Р получается суммированием вкладов от всех зарядов в плоскости. Разумеется, мы должны взять векторную сумму полей. Но поскольку направление поля при­мерно одинаково для всех зарядов, в рамках сделанного прибли­жения достаточно сложить величины всех полей. Кроме того, в нашем приближении поле в точке Рзависит только от r, сле­довательно, все заряды с одинаковым r создают равные поля. Поэтому, прежде всего, сложим поля всех зарядов в кольце ши­риной dr и радиусом r. Интегрируя затем по всем r, получаем полное поле всех зарядов.

Число зарядов в кольце равно произведению площади кольца, 2nrdr, на h— плотность зарядов на единицу площади. Отсюда

Интеграл берется в пределах r=0 и r=Ґ. Время t, конечно, зафиксировано, так что единственными меняющимися величинами являются r и r. Отвлечемся пока от постоянных множителей, включая и eiwt, и вычислим интеграл

(30.13)

Для этого учтем соотношение между r и r:

(30.14)

При дифференцировании формулы (30.14) z нужно считать независимым от r, тогда

2rdr = 2rdr,

что очень кстати, поскольку при замене в интеграле rdr на rdr знаменатель r сокращается. Интеграл приобретает более простой вид

(30.15)

. Экспонента интегрируется очень просто. Нужно поставить в знаменатель коэффициент при r в показателе экспоненты и взять саму экспоненту в точках, соответствующих пределам. Но пределы по r отличаются от пределов по р. Когда r=0, нижний предел r=z, т. е. пределы по r равны z и бесконечности. Ин­теграл (30.15) равен

(30.16)

Вместо (r/с)Ґ мы здесь написали Ґ, поскольку и то и другое означает просто сколь угодно большую величину!

А вот е-iҐ— величина загадочная. Ее действительная часть, равная cos (-Ґ), с математической точки зрения величина со­вершенно неопределенная. [Хотя можно допустить, что она на­ходится где-то [а может быть и всюду (?)—между +1 и -1!]Но в физической ситуации эта величина может означать нечто вполне разумное и обычно оказывается равной нулю. Чтобы убедиться, что это так в нашем случае, вернемся к первоначальному инте­гралу (30.15)

Выражение (30.15) можно понимать как сумму большого числа маленьких комплексных чисел, модуль которых ar, a угол в комплексной плоскости q=-wr/с. Попробуем оценить эту сумму графически. На фиг. 30.11 отложены первые пять членов суммы. Каждый отрезок кривой имеет длину Dr и рас­положен под углом Dq =-w(Dr/с) к предыдущему отрезку. Сум­ма первых пяти слагаемых обозначена стрелкой из начальной точки к концу пятого отрезка. Продолжая прибавлять отрезки, мы опишем многоугольник, вернемся примерно к начальной точке и начнем описывать новый многоугольник. Чем большее число отрезков мы будем прибавлять, тем большее число раз мы обернемся, двигаясь почти по окружности с радиусом с/w. Теперь понятно, почему интеграл дает при вычислении неопре­деленный ответ!

Здесь мы должны обратиться к физическому смыслу нашего примера. В любой реальной ситуации плоскость зарядов не может быть бесконечной, а должна где-то оборваться. Если плоскость резко обрывается и ее граница имеет точно форму окружности, то наш интеграл будет равен некоторому значению на этой окружности (см. фиг. 30.11). Если же плотность зарядов

Фиг. 30.11. Вычисление интегра­ла

графическим способом.

постепенно уменьшается по мере удаления от центра (или обра­щается в нуль вне некоторой границы неправильной формы, так что для достаточно больших r вклад всего кольца шириной dr равен нулю), то коэффициент ню в точном интеграле убывает, стремясь к нулю. Поскольку длина добавляемых отрезков в этом случае уменьшается, а угол Dq остается тем же самым, график кривой, соответствующей интегралу, будет иметь вид спирали. Спираль оканчивается в центре первоначальной ок­ружности, как изображено на фиг. 30.12. Физически правиль­ное значение интеграла дается величиной А, которой на схеме соответствует расстояние от начальной точки до центра окруж­ности, равное как нетрудно убедиться.

(30.17)

Точно такой же результат мы получили бы из (30.16), положив e-iҐ=0.

(Есть еще одна причина, почему вклад в интеграл от больших значений r стремится к нулю,— это опущенный нами множитель, учитывающий проекцию ускорения на плоскость, перпендику­лярную линии PQ.)

Нас, конечно, интересует именно случай, имеющий физи­ческий смысл, поэтому мы положим е-iҐ равным нулю. Возвраща­ясь к формуле (30.12) для поля и вводя все опущенные ранее множители, мы получаем

(30.18)

(помня, что l/i =-i).

Интересно отметить, что iwx0eiwtв точности равно скорости зарядов, так что выражения для поля можно переписать в виде

Этот результат немного странен, потому что запаздывание отве­чает расстоянию z, которое есть кратчайшее расстояние от Р до плоскости. Но таков ответ, и, к счастью, формула довольно проста. [Добавим кстати, что, хотя формулы (30.18) и (30.19) бы­ли получены только для достаточно большого расстояния от плоскости, обе они оказываются правильными для любых z,

даже для z<l.]

*В нашем случае T=D/с=mnl,/с, где с — скорость света. Частота v=c/l, так что dv=cdl/l2.

*Прежде всего потому, что сам критерий Рэлея приближенный. Он только указывает область углов, где трудно разобрать, сколько звезд на изображении — одна или две. А в действительности, если точно измерить распределение интенсивности, можно различить два источника при углах q, даже меньших l/L.

Глава 31

КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

§ 1. Показатель преломления

§ 2. Поле, излучае­мое средой

§ 3. Дисперсия

§ 4. Поглощение

§ 5. Энергия световой волны

§ 6. Дифракция света на непрозрачном экране


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "3. Излучение. Волны. Кванты"

Книги похожие на "3. Излучение. Волны. Кванты" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 3. Излучение. Волны. Кванты"

Отзывы читателей о книге "3. Излучение. Волны. Кванты", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.