» » » Миран Липовача - Изучай Haskell во имя добра!


Авторские права

Миран Липовача - Изучай Haskell во имя добра!

Здесь можно купить и скачать "Миран Липовача - Изучай Haskell во имя добра!" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство ДМК Пресс, год 2012. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Миран Липовача - Изучай Haskell во имя добра!
Рейтинг:
Название:
Изучай Haskell во имя добра!
Издательство:
неизвестно
Год:
2012
ISBN:
978-5-94074-749-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Изучай Haskell во имя добра!"

Описание и краткое содержание "Изучай Haskell во имя добра!" читать бесплатно онлайн.



На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.

Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.

Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.

Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!

Эта книга поможет многим читателям найти свой путь к Haskell.


Отображения, монады, моноиды и другое!

Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.

С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.

Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.

Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:

• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.

• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.

• Организовывать свои программы, создавая собственные типы, классы типов и модули.

• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.


Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей.


Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.






ghci> [x*2 | x <– [1..10]]

[2,4,6,8,10,12,14,16,18,20]

В выражении [x*2 | x <– [1..10]] мы извлекаем элементы из списка [1..10], т. е. x последовательно принимает все значения элементов списка. Иногда говорят, что x связывается с каждым элементом списка. Часть генератора, находящаяся левее вертикальной черты |, определяет значения элементов результирующего списка. В нашем примере значения x, извлечённые из списка [1..10], умножаются на два.

Теперь давайте добавим к этому генератору условие выборки (предикат). Условия идут после задания источника данных и отделяются от него запятой. Предположим, что нам нужны только те элементы, которые, будучи удвоенными, больше либо равны 12.

ghci> [x*2 | x <– [1..10], x*2 >= 12]

[12,14,16,18,20]

Это работает. Замечательно! А как насчёт ситуации, когда требуется получить все числа от 50 до 100, остаток от деления на 7 которых равен 3? Легко!

ghci> [ x | x <– [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]

И снова получилось!

ПРИМЕЧАНИЕ. Заметим, что прореживание списков с помощью условий выборки также называется фильтрацией.

Мы взяли список чисел и отфильтровали их условиями. Теперь другой пример. Давайте предположим, что нам нужно выражение, которое заменяет каждое нечётное число больше 10 на БАХ!", а каждое нечётное число меньше 10 – на БУМ!". Если число чётное, мы выбрасываем его из нашего списка. Для удобства поместим выражение в функцию, чтобы потом легко использовать его повторно.

boomBangs xs = [if x < 10 then "БУМ!" else "БАХ!" | x <– xs, odd x]

ПРИМЕЧАНИЕ. Помните, что если вы пытаетесь определить эту функцию в GHCi, то перед её именем нужно написать let. Если же вы описываете её в отдельном файле, а потом загружаете его в GHCi, то никакого let не требуется.

Последняя часть описания – условие выборки. Функция odd возвращает значение True для нечётных чисел и False – для чётных. Элемент включается в список, только если все условия выборки возвращают значение True.

ghci> boomBangs [7..13]

["БУМ!","БУМ!","БАХ!","БАХ!"]

Мы можем использовать несколько условий выборки. Если бы по требовалось получить все числа от 10 до 20, кроме 13, 15 и 19, то мы бы написали:

ghci> [x | x <– [10..20], x /= 13, x /= 15, x /= 19]

[10,11,12,14,16,17,18,20]

Можно не только написать несколько условий выборки в генераторах списков (элемент должен удовлетворять всем условиям, чтобы быть включённым в результирующий список), но и выбирать элементы из нескольких списков. В таком случае выражения перебирают все комбинации из данных списков и затем объединяют их по производящей функции, которую мы указали:

ghci> [x+y | x <- [1,2,3], y <- [10,100,1000]]

[11,101,1001,12,102,1002,13,103,1003]

Здесь x берётся из списка [1,2,3], а y – из списка [10,100,1000]. Эти два списка комбинируются следующим образом. Во-первых, x становится равным 1, а y последовательно принимает все значения из списка [10,100,1000]. Поскольку значения x и y складываются, в начало результирующего списка помещаются числа 11, 101 и 1001 (1 прибавляется к 10, 100, 1000). После этого x становится равным 2 и всё повторяется, к списку добавляются числа 12, 102 и 1002. То же самое происходит для x равного 3.

Таким образом, каждый элемент x из списка [1,2,3] всеми возможными способами комбинируется с каждым элементом y из списка [10,100,1000], а x+y используется для построения из этих комбинаций результирующего списка.

Вот другой пример: если у нас есть два списка [2,5,10] и [8,10,11], и мы хотим получить произведения всех возможных комбинаций из элементов этих списков, то можно использовать следующее выражение:

ghci> [x*y | x <– [2,5,10], y <– [8,10,11]]

[16,20,22,40,50,55,80,100,110]

Как и ожидалось, длина нового списка равна 9.

Допустим, нам потребовались все возможные произведения, которые больше 50:

ghci> [x*y | x <– [2,5,10], y <– [8,10,11], x*y > 50]

[55,80,100,110]

А как насчёт списка, объединяющего элементы списка прилагательных с элементами списка существительных… с довольно забавным результатом?

ghci> let nouns = ["бродяга","лягушатник","поп"]

ghci> let adjs = ["ленивый","ворчливый","хитрый"]

ghci> [adj ++ " " ++ noun | adj <– adjs, noun <– nouns]

["ленивый бродяга","ленивый лягушатник","ленивый поп",

"ворчливый бродяга","ворчливый лягушатник", "ворчливый поп",

"хитрый бродяга","хитрый лягушатник","хитрый поп"]

Генераторы списков можно применить даже для написания своей собственной функции length! Назовём её length': эта функция будет заменять каждый элемент списка на 1, а затем мы все эти единицы просуммируем функцией sum, получив длину списка:

length' xs = sum [1 | _ <– xs]

Символ _ означает, что нам неважно, что будет получено из списка, поэтому вместо того, чтобы писать имя образца, которое мы никогда не будем использовать, мы просто пишем _. Поскольку строки – это списки, генератор списков можно использовать для обработки и создания строк. Вот функция, которая принимает строку и удаляет из неё всё, кроме букв в верхнем регистре:

removeNonUppercase st = [c | c <– st, c `elem` ['А'..'Я']]

Всю работу здесь выполняет предикат: символ будет добавляться в новый список, только если он является элементом списка ['А'..'Я']. Загрузим функцию в GHCi и проверим:

ghci> removeNonUppercase "Ха-ха-ха! А-ха-ха-ха!"

"ХА"

ghci> removeNonUppercase "ЯнеЕМЛЯГУШЕК"

"ЯЕМЛЯГУШЕК"

Вложенные генераторы списков также возможны, если вы работаете со списками, содержащими вложенные списки. Допустим, список содержит несколько списков чисел. Попробуем удалить все нечётные числа, не разворачивая список:

ghci> let xxs = [[1,3,5,2,3,1,2],[1,2,3,4,5,6,7],[1,2,4,2,1,6,3,1,3,2]]

ghci> [[x | x <– xs, even x ] | xs <– xxs]

[[2,2],[2,4,6],[2,4,2,6,2]]

ПРИМЕЧАНИЕ. Вы можете писать генераторы списков в несколько строк. Поэтому, если вы не в GHCi, лучше разбить длинные генераторы списков, особенно вложенные, на несколько строк.

Кортежи


Кортежи позволяют хранить несколько элементов разных типов как единое целое.

В некотором смысле кортежи похожи на списки, однако есть и фундаментальные отличия. Во-первых, кортежи гетерогенны, т. е. в одном кортеже можно хранить элементы нескольких различных типов. Во-вторых, кортежи имеют фиксированный размер: необходимо заранее знать, сколько именно элементов потребуется сохранить.

Кортежи обозначаются круглыми скобками, а их компоненты отделяются запятыми:

ghci> (1, 3)

(1,3)

ghci> (3, 'a', "привет")

(3,'a',"привет")

ghci> (50, 50.4, "привет", 'b')

(50,50.4,"привет",'b')

Использование кортежей

Подумайте о том, как бы мы представили двумерный вектор в языке Haskell. Один вариант – использовать список. Это могло бы сработать – ну а если нам нужно поместить несколько векторов в список для представления точек фигуры на двумерной плоскости?.. Мы могли бы, например, написать: [[1,2],[8,11],[4,5]].

Проблема подобного подхода в том, что язык Haskell не запретит задать таким образом нечто вроде [[1,2],[8,11,5],[4,5]] – ведь это по-прежнему будет список списков с числами. Но по сути данная запись не имеет смысла. В то же время кортеж с двумя элементами (также называемый «парой») имеет свой собственный тип; это значит, что список не может содержать несколько пар, а потом «тройку» (кортеж размера 3). Давайте воспользуемся этим вариантом. Вместо того чтобы заключать векторы в квадратные скобки, применим круглые: [(1,2),(8,11),(4,5)]. А что произошло бы, если б мы попытались создать такую комбинацию: [(1,2),(8,11,5),(4,5)]? Получили бы ошибку:

Couldn't match expected type `(t, t1)'

against inferred type `(t2, t3, t4)'

In the expression: (8, 11, 5)

In the expression: [(1, 2), (8, 11, 5), (4, 5)]

In the definition of `it': it = [(1, 2), (8, 11, 5), (4, 5)]

Мы попытались использовать пару и тройку в одном списке, и нас предупреждают: такого не должно быть. Нельзя создать и список вроде [(1,2),("Один",2)], потому что первый элемент списка – это пара чисел, а второй – пара, состоящая из строки и числа.

Кортежи также можно использовать для представления широкого диапазона данных. Например, если бы мы хотели представить чьё-либо полное имя и возраст в языке Haskell, то могли бы воспользоваться тройкой: ("Кристофер", "Уокен", 69). Как видно из этого примера, кортежи также могут содержать списки.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Изучай Haskell во имя добра!"

Книги похожие на "Изучай Haskell во имя добра!" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Миран Липовача

Миран Липовача - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Миран Липовача - Изучай Haskell во имя добра!"

Отзывы читателей о книге "Изучай Haskell во имя добра!", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.