Георг Гегель - НАУКА ЛОГИКИ. том 1
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "НАУКА ЛОГИКИ. том 1"
Описание и краткое содержание "НАУКА ЛОГИКИ. том 1" читать бесплатно онлайн.
Видимость случайности, представляемая диференциальным исчислением в его приложениях, упростилась бы уже одним сознанием природы тех областей, в которых может иметь место приложение, и своеобразной потребности и условий этого приложения. Но в пределах самих этих областей важно далее знать, между какими частями предметов математической задачи имеет место тот род отношения, который своеобразно полагается диференциальным исчислением. Мы должны сразу же заметить предварительно, что при этом нужно принимать во внимание двоякого рода отношения. Действие понижения степени некоторого уравнения, рассматриваемое со стороны производных функций его переменных величин, дает результат, который в самом себе поистине уже есть не уравнение, а некоторое отношение. Это отношение есть предмет собственно диференциального исчисления. Но именно поэтому, во-вторых, здесь имеется также отношение самого более высокого степенного определения (первоначального уравнения) к низшему (производной функции). Это второе отношение мы должны оставить пока в стороне; впоследствии оно окажется. своеобразным предметом интегрального исчисления.
Рассмотрим сначала первое отношение и возьмем для – долженствующего быть заимствованным из области так называемого приложения – определения того момента, в котором заключается интерес действия, простейший пример кривых, определяемых уравнением второй степени. Как известно, уравнением непосредственно дано в некотором степенном определении отношение координат. Следствиями основного определения являются определения других связанных с координатами прямых линий: касательной, подкасательной, нормальной и т. п. Но уравнения между этими линиями и координатами суть линейные уравнения; те целые, как части которых определены эти линии, суть прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степенное определение, к этим линейным уравнениям содержит в себе вышеуказанный переход от первоначальной функции, т. е. от той функции, которая представляет собою некоторое уравнение, к производной функции, которая есть некоторое отношение и притом отношение между известными, содержащимися в кривой, линиями. Связь между отношением этих линий и уравнением кривой и есть то, что требуется найти.
Небезынтересно привести здесь ту историческую справку, что первые открыватели умели указать найденное ими решение лишь совершенно эмпирическим образом, не будучи в состоянии объяснить само действие, оставшееся совершенно внешним. Я ограничиваюсь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых, отличающемуся ближайшим образом от особенностей диференциального исчисления, он сообщает, «так как его друзья этого настойчиво просят» (Lect. X), также и свой метод определения касательных. Нужно прочесть у него самого, как он решает эту задачу, чтобы составить надлежащее представление о том, как его указания относительно этого метода носят характер указания о совершенно внешнем правиле, в том же стиле, как излагалось когда-то в учебниках арифметики тройное правило или, еще лучше, так называемая проба арифметических действий девяткою (48). Он чертит те маленькие линии, которые впоследствии были названы приращениями в характеристическом треугольнике кривой линии, и затем в виде простого правила предписывает отбросить как излишние те члены, которые в ходе развертывания уравнения выступают как степени или произведения этих приращений (etenim isti termini nihilum valebunt) (49), а также и те члены, которые содержат величины, определяемые лишь из первоначального уравнения (позднейшее вычитание первоначального уравнения из него же с приращениями), и, наконец, подставить вместо приращения ординаты самую ординату и вместо приращения абсциссы – подкасательную. Нельзя, если дозволительно так выразиться, изложить способ более школьно-педантически; последняя подстановка представляет собою сделанное в обычном диференциальном методе основой определения касательной допущение пропорциональности приращений ординаты и абсциссы ординате и подкасательной; в правиле Барроу это допущение выступает во всей своей наивной наготе. Был найден простой способ определения подкасательной; способы Роберваля и Ферма сводятся к чему-то сходному – метод нахождения наибольших и наименьших значений, из которого исходил последний, покоится на тех же основах и том же приеме. Математической страстью того времени было нахождение так называемых методов, т. е. этого рода правил, и притом делать из них секрет, что было не только легко, но в известном отношении даже нужно, и нужно именно потому, что было легко, а именно потому, что изобретатели находили лишь эмпирически внешнее правило, а не метод, т. е. не нечто, выведенное из признанных начал. Такие так называемые методы Лейбниц воспринял от своего времени; Ньютон также воспринял их от своего времени, а непосредственно – от своего учителя; обобщением их формы и их применимости они проложили новые пути в науках, но, занимаясь этим делом, они чувствовали вместе с тем потребность освободить прием от характера чисто внешних правил и старались дать ему требуемое оправдание.
Анализируя метод ближе, мы увидим, что истинный ход действия в нем таков. Во-первых, степенные определения (разумеется, переменных величин), содержащиеся в уравнении, понижаются, приводятся к их первым функциям. Но этим меняется значение членов уравнения. Поэтому уже нет более уравнения, а возникло лишь отношение между первой функцией одной переменной величины и первой функцией другой переменной. Вместо px = y2 мы имеем p : 2 y или вместо 2 ax – x2 = y2 мы имеем a – x : y, что позднее стали обыкновенно обозначать как отношение dy/ dx. Уравнение есть уравнение кривой, а это отношение, совершенно зависящее от него, выведенное (выше – согласно голому правилу) из него, есть, напротив, некоторое линейное отношение, которому пропорциональны известные линии; p : 2 y или a – x : y сами суть отношения прямых линий данной кривой, а именно отношения координат и параметра; но этим мы еще ничего не узнали. Мы желаем знать о других встречающихся в кривой линиях, что им присуще указанное отношение, желаем найти равенство двух отношений. – Следовательно, является вопрос, во-вторых, какие прямые линии, определяемые природой кривой, находятся в таком отношении? – Но это то, что уже ранее было известно, а именно, что такое полученное указанным путем отношение есть отношение ординаты к подкасательной. Это нашли остроумным геометрическим способом древние; новые же изобретатели открыли только эмпирический прием, как придать уравнению кривой такой вид, чтобы получилось то первое отношение, о котором уже было известно, что оно равно отношению, содержащему в себе ту линию (здесь – подкасательную), которая подлежит определению. Частью это придание уравнению желаемого вида было задумано и проведено методически – диференцирование, – частью же были изобретены воображаемые приращения координат и воображаемый, образованный из этих приращений и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного путем понижения степени уравнения, с отношением ординаты и подкасательной была представлена не как нечто эмпирическое, взятое лишь из давно знакомого, а как нечто доказанное. Однако это давно знакомое оказывается вообще (а самым неоспоримым образом в вышеуказанной форме правил) единственным побуждением к допущению – и соответственно, единственным оправданием для допущения характеристического треугольника и указанной пропорциональности.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "НАУКА ЛОГИКИ. том 1"
Книги похожие на "НАУКА ЛОГИКИ. том 1" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георг Гегель - НАУКА ЛОГИКИ. том 1"
Отзывы читателей о книге "НАУКА ЛОГИКИ. том 1", комментарии и мнения людей о произведении.