» » » » Артур Бенджамин - Магия математики: Как найти x и зачем это нужно


Авторские права

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Здесь можно купить и скачать "Артур Бенджамин - Магия математики: Как найти x и зачем это нужно" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентАльпина6bdeff1e-120c-11e2-86b3-b737ee03444a, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно
Рейтинг:
Название:
Магия математики: Как найти x и зачем это нужно
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-9614-4466-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Магия математики: Как найти x и зачем это нужно"

Описание и краткое содержание "Магия математики: Как найти x и зачем это нужно" читать бесплатно онлайн.



Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.

«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.






Как уже было сказано, правило суммы исходит из того, что в двух типах объектов каждый объект уникален. Но если у нас все же есть несколько объектов (в количестве c), принадлежащих к обоим типам, не считать же их дважды, правда? Значит, формулу придется немного изменить: a + b – c. Например, если в классе у 12 учеников есть собаки, у 19 – кошки, а у 7 – и собаки и кошки, получается, что общее количество учеников, держащих только одно животное, будет 12 + 19 – 7 = 24. Если перевести это в плоскость чистой математики, в промежутке от 1 до 100 у нас получится 50 чисел, кратных 2; 33 числа, кратных 3; и 16 чисел, кратных как 2, так и 3 (ну или кратных 6). Значит, количество чисел, кратных либо 2, либо 3, нужно подсчитывать так: 50 + 33 – 16 = 67.

Правило произведения применяется в том случае, когда вам нужно предпринять некое действие, которое состоит из двух частей. Если имеется a вариантов выполнения первой части и b вариантов второй, то для всего действия имеется a × b вариантов. То есть если у меня есть 5 разных пар брюк и 8 различных рубашек и если я (как и большинство математиков) при этом не особо озабочен вопросами стиля и сочетания цветов, общее количество возможных комбинаций составит 5 × 8 = 40. А если я еще решу надеть один из 10 своих галстуков (то есть мое действие будет состоять уже из трех частей: галстук, брюки и рубашка), комбинаций станет уже 40 × 10 = 400.

В полной колоде карт каждая карта принадлежит к одной из 4 мастей (пики, червы, бубны, трефы) и 13 достоинств (туз, 2, 3, 4, 5, 6, 7, 8, 9, 10, валет, дама и король). Значит, всего в полной колоде 4 × 13 = 52 карты. При желании все их можно разложить в виде прямоугольника со сторонами 4 на 13 – тем самым мы получим визуальное представление об общем количестве в 52.

Давайте применим правило произведения для подсчета почтовых индексов. Каково возможное количество пятизначных индексов? Каждый индекс – это пятизначное число, состоящее из цифр от 0 до 9. Наименьшее из них будет иметь вид 00000, а наибольшее – 99999[7]. Значит, всего имеется 100 000 вариантов. К тому же результату можно прийти с помощью правила произведения. У нас есть 10 вариантов выбора числа для первой цифры (от 0 до 9), 10 – для второй, и дальше по 10 для третьей, четвертой и пятой. Значит, имеем 105 = 100 000 вариантов.

В почтовых индексах числа могут повторяться. А если взять ситуацию, в которой объекты не могут повторяться – например, когда вы выкладываете предметы в ряд? Несложно заметить, что два объекта в каждой паре могут быть расположены двумя способами. Скажем, буквы А и B могут быть представлены либо как АВ, либо как ВА. Способов разложить 3 объекта у нас ровно 6: ABC, ACB, BAC, BCA, CAB, CBA. А можете представить в уме, без ручки и бумажки, 24 возможные комбинации 4 объектов? Начнем с выбора одного из четырех вариантов для начальной позиции (выбираем из четырех букв: А, B, C или D). Для второй позиции останется 3 варианта, для третьей – 1, для последней, четвертой, – всего лишь 1. Всего получается 4 × 3 × 2 × 1 = 4! = 24 варианта. Другими словами, для n объектов имеется n! вариантов их расположения.

А вот пример одновременного использования правил суммы и произведения. Допустим, некое государство выдает автовладельцам регистрационные номера двух типов. Номера первого типа состоят из 3 букв и 3 цифр, второго – из 2 букв и 4 цифр (в обоих случаях сначала идут буквы, потом – цифры). Сколько всего будет номеров (притом что мы можем использовать все 26 букв латинского алфавита и 10 цифр, не обращая при этом внимания на внешнее сходство, вроде О и ноль)? Сначала посчитаем количество номеров первого типа, применив правило произведения:

26 × 26 × 26 × 10 × 10 × 10 = 17 576 000

То же с номерами второго типа:

26 × 26 × 10 × 10 × 10 × 10 = 6 760 000

Так как один номер относится либо к первому, либо ко второму типу (и не повторяется), согласно правилу суммы общее количество возможных комбинаций – 24 336 000.

Но подобного рода подсчеты (математики даже выделяют такие упражнения в отдельную ветвь своей науки – комбинаторику) не приносили бы столько удовольствия, если бы не многообразие способов, которыми можно достичь желаемого (мы уже успели в этом убедиться, когда говорили об устном счете). Оказывается, то же количество автомобильных номеров можно посчитать за один шаг:

26 × 26 × 36 × 10 × 10 × 10 = 24 336 000

ведь для первых двух символов каждого номера существует 26 вариантов, для последних трех – 10, при этом третий символ может быть или буквой, или цифрой, а значит, возможных вариантов здесь будет 26 + 10 = 36.

Лотерея и покер

В этом разделе мы используем то, что только что узнали, для подсчета своих шансов выиграть в лотерею или собрать нужную комбинацию в покере. Но позвольте сначала предложить вам немного мороженого.

Допустим, вам предлагают наполнить рожок 3 шариками разных сортов мороженого. Всего можно выбирать из 10 сортов. Сколько всего можно получить разных рожков? Не забудьте: порядок шариков разных сортов имеет значение (а как же иначе? Ведь вкус-то разный!). Если повторяться можно, получается, что у нас есть 10 вариантов для каждого из трех шариков: 103 = 1000 вероятных комбинаций. Ну а если нельзя – их количество сокращается до 10 × 9 × 8 = 720, как показано на картинке чуть ниже.

Теперь кое-что поинтереснее. Как будут лежать три шарика трех разных сортов в вазочке, если их порядок не важен? Можно сказать точно: их будет меньше. А конкретно – в 6 раз меньше. Попытаемся понять, почему. Лежащие в вазочке 3 шарика мороженого 3 разных сортов (допустим, шоколадное, ванильное и мятное) можно переложить в рожок 3! = 6 способами. Значит, из 1 варианта вазочки можно собрать 6 вариантов рожков. Количество вазочек, таким образом, будет равняться

Другой способ представить 10 × 9 × 8 – 10!/7! (хотя первый пример, конечно, легче подсчитать). Значит, количество чашек – Такая запись читается как «число сочетаний из 10 по 3», обозначается символом и равняется 120. Другими словами, число вариантов при выборе определенного количества различных объектов, равного n, из общего количества различных объектов, равного k (в произвольном порядке), называется «числом сочетаний из n по k» и подсчитывается по формуле

Математики называют такого рода вычисления сочетаниями или комбинациями, а числа вида  – биноминальными коэффициентами. Вычисления же при строго определенном порядке объектов называется перестановкой или пермутацией. Эти два понятия часто путают: например, мы привыкли думать, что на «кодовом» замке нужно подбирать «комбинации» цифр, хотя по сути это не комбинации, а перестановки, ведь порядок чисел, составляющих код, имеет большое, если не решающее, значение.

Если ваш продавец мороженого предлагает 20 разных сортов, то, направляясь туда с намерением купить 5 разных шариков (в случайном порядке), вам придется выбирать из

вариантов. Кстати, если на вашем калькуляторе не предусмотрено специальной кнопки, чтобы подсчитать просто наберите в любом поисковике «число сочетаний из 20 по 5»[8], и вы увидите веб-калькулятор с готовым ответом.

Биноминальные коэффициенты, впрочем, могут появляться и там, где порядок расположения объектов определенную роль все же играет. Если вы 10 раз подбросите монетку, сколько всего у вас будет возможных последовательностей результатов (вроде О-Р-О-Р-Р-О-О-Р-Р-Р или О-О-О-О-О-О-О-О-О-О)? Так как каждый бросок имеет два возможных исхода, правило произведения говорит нам, что их будет 210 = 1024, причем шансы выпадения каждой стороны абсолютно равны. (Некоторые, конечно, удивятся: вероятность того, что выпадет вторая комбинация, вроде бы куда ниже, чем у первой. Тем не менее шансы и у той, и у другой абсолютно равные – 1 к 1024.) С другой стороны, то, что за 10 бросков орел выпадет 4 раза, а не 10, куда вероятнее, ведь комбинаций с 4 орлами много, а с 10 – всего одна. Вот только «много» – это сколько? Подобная последовательность определяется количеством «орлиных» бросков, равным 4 из 10, соответственно, остальные броски должны закончиться выпадением решки. Количество способов определить, какие именно 4 из 10 бросков дадут нам орла, равно (все равно что выбирать 4 разных шарика мороженого из 10 сортов). Значит, наш шанс, что из 10 попыток 4 раза выпадет орел, если бросать симметричную, абсолютно уравновешенную монетку, равен

или примерно 20 % всех возможных комбинаций.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Магия математики: Как найти x и зачем это нужно"

Книги похожие на "Магия математики: Как найти x и зачем это нужно" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Артур Бенджамин

Артур Бенджамин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Артур Бенджамин - Магия математики: Как найти x и зачем это нужно"

Отзывы читателей о книге "Магия математики: Как найти x и зачем это нужно", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.