» » » » Артур Бенджамин - Магия математики: Как найти x и зачем это нужно


Авторские права

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Здесь можно купить и скачать "Артур Бенджамин - Магия математики: Как найти x и зачем это нужно" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентАльпина6bdeff1e-120c-11e2-86b3-b737ee03444a, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно
Рейтинг:
Название:
Магия математики: Как найти x и зачем это нужно
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-9614-4466-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Магия математики: Как найти x и зачем это нужно"

Описание и краткое содержание "Магия математики: Как найти x и зачем это нужно" читать бесплатно онлайн.



Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.

«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.






Эта закономерность может привести нас к другой, еще более красивой. Раз уж мы хотим заставить числа танцевать, почему бы не сделать это и с их квадратами?

Взгляните вот на такую пирамидку уравнений:

Какую закономерность вы видите? Подсчитать количество чисел в каждом ряду несложно: 3, 5, 7, 9, 11 и так далее. А дальше неожиданность: первое число каждого ряда – по крайней мере, первых 5 записанных здесь рядов – является квадратом числа. И правда: 1, 4, 9, 16, 25… Почему так получается? Возьмем пятый ряд. Сколько чисел ему предшествуют? Давайте сложим их количество: 3 + 5 + 7 + 9. Прибавим к ним еще единицу, и у нас получится первое число пятого ряда – сумма первых 5 нечетных чисел, которая, как мы уже знаем, равна 5².

А теперь просчитаем пятое уравнение, ничего к нему не добавляя. Как бы это сделал Гаусс? Если пока не обращать внимания на начальное 25, слева у нас останется 5 чисел, каждое из которых будет ровно на 5 меньше, чем соответствующее ему число справа.

То есть сумма чисел справа будет ровно на 25 больше суммы чисел слева. Но это без учета 25, которые стоят в начале. А с ними у нас получается именно тот результат, который обещан нам знаком равенства. Следуя той же логике и призвав на помощь алгебру, мы докажем, что этот ряд можно продолжать бесконечно.

Отступление

А теперь – специально для тех, кто хотел немного алгебры. Ряду n предшествует количество чисел, равное 3 + 5 + 7 +… + (2n – 1) = n² – 1, поэтому левая сторона нашего уравнения должна начинаться с числа n², за которым следует n последовательных чисел, от n² + 1 до n² + n. Справа – n последовательных чисел, начиная с n² + n + 1, заканчивая n² + 2n. Если мы временно «забудем» про число n² слева, то увидим, что каждое из n чисел справа на n больше, чем соответствующее ему последовательное число слева. Разница при этом составляет n × n, то есть n². Закономерность эта компенсируется начальным n² слева, поэтому-то левая и правая части и равны.

Перейдем к другой закономерности. Как мы уже видели, из нечетных чисел можно составлять квадраты. А теперь посмотрим, что произойдет, если собрать их в один большой треугольник – вроде того, что изображен чуть ниже.

Так отлично видно, что 3 + 5 = 8, а 7 + 9 + 11 = 27, а 13 + 15 + 17 + 19 = 64. Что общего у 1, 8, 27 и 64? Да это же полные кубы чисел! Например, если сложить между собой пять чисел пятого ряда, мы получим:

21 + 23 + 25 + 27 + 29 = 125 = 5 × 5 × 5 = 5³

Логика вроде бы подсказывает, что сумма чисел в ряду n будет равна n³. Но насколько верным будет этот вывод? Не простое ли это совпадение? Чтобы лучше понять эту закономерность, посмотрим на числа в середине 1, 3 и 5 рядов. Что мы видим? 1, 9 и 25. То есть квадраты. В середине 2 и 4 рядов чисел нет, но по сторонам центра 2 ряда видим числа 3 и 5, среднее арифметическое которых – 4, а по сторонам центра 4 ряда – 15 и 17 со средним арифметическим 16. Давайте подумаем, как эту закономерность можно использовать.

Снова возьмем 4 ряд. Что мы тут видим? А видим мы, что сумма всех чисел в нем есть 5³ – и не нужно к ним ничего добавлять, чтобы заметить: все они симметрично расположены вокруг 25. Так как среднее арифметическое этих чисел – 5², уравнение преобразуется в 5² + 5² + 5² + 5² + 5² = 5 × 5², то есть 5³. То же справедливо и в отношении 4 ряда: среднее арифметическое всех чисел в нем – 4², их сумма – 4³. Чуть-чуть алгебры (к которой мы здесь не прибегаем), и вы легко сделаете вывод, что среднее арифметическое n чисел ряда n равно n², а их сумма равна n³, что и требовалось доказать.

Кстати, если уж мы взялись оперировать квадратами и кубами, не могу удержаться, чтобы не указать вам на еще одну закономерность. Что получится, если сложить кубы чисел, начиная с 1³?

Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами. Но это не любые квадраты, а квадраты 1, 3, 6, 10, 15 и т. д. – треугольных чисел! Мы уже знаем, что они по своей сути являются суммами простых чисел, а значит,

1³ + 2³ + 3³ + 4³ + 5³ = 225 = 15² = (1 + 2 + 3 + 4 + 5)²

Другими словами, сумма кубов первых n чисел есть квадрат суммы этих самых первых n чисел. Подтвердить это мы пока не можем, но в главе 6 пару доказательств увидим.

Как быстро считать в уме

Среди читателей наверняка найдутся те, кто, познакомившись с этими примерами, скажет: «Ух ты, здо́рово! Но какая от всего этого польза?» Здесь в любом математике проснулся бы художник, и в ответ вы услышали бы: «Разве нужно красоте оправдание иное, нежели сама красота?» Ведь чем лучше мы понимаем числовые закономерности, тем глубже постигаем их красоту. И все-таки иногда они приносят практическую пользу.

Вот простая закономерность, которую мне посчастливилось обнаружить в юности (даже если я и не был первооткрывателем). Я смотрел на пары чисел, которые в сумме давали 20 (10 и 10, например, или 9 и 11), и думал, а какие из них надо перемножить, чтобы получить наибольшее произведение? Логика подсказывала, что это 10 на 10, и моя схема эта подтвердила.

Эта закономерность была несомненна. Чем дальше отстояли друг от друга числа, тем меньше становилось произведение. И насколько они отдалялись от 100? На 1, на 4, на 9, 16, 25… То есть на 1², 2², 3², 4², 5² и т. д. А потом мне стало интересно, работает ли эта закономерность для чисел, дающих другую сумму. Я решил попробовать 26:

И я снова увидел, что наибольшее произведение дало умножение двух одинаковых чисел. А потом произведение стало уменьшаться с интервалом сначала 1, потом 4, потом 9 и т. д. Еще несколько подобных примеров убедили меня, что закономерность была строгой (ее алгебраическое выражение я покажу чуть позже). Выяснил я и то, что ее можно применять для быстрого возведения чисел в квадрат.

Допустим, нам нужно знать квадрат 13. Вместо того чтобы умножать 13 × 13, можно сделать умножение попроще: 10 × 16 = 160. До правильного ответа уже рукой подать, и чтобы его получить, достаточно будет прибавить возведенное в квадрат 3 – число, составляющее разницу между 13 и числами, которые мы перемножили. То есть:

13² = 10 × 16 + 3² = 160 + 9 = 169

Можно взять еще один пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:

98²= 100 × 96 + 2² = 9600 + 4 = 9604

Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:

35² = 30 × 40 + 5² = 1200 + 25 = 122555² = 50 × 60 +5² = 3000 + 25 = 302585² = 80 × 90 + 5² = 7200 + 25 = 7225

Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:

59² = 60 × 58 + 1² = 3480 + 1 = 3481Отступление

А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о разнице квадратов):

А² = (A + d) (Ad) + d²

где A – число, возводимое в квадрат, d – разность с ближайшим круглым числом (формула, кстати, справедлива для любого d). Для примера возведем в квадрат 59: А = 59, d = 1, значит, формула превращается в (59 + 1) × (59 – 1) + 1², как и в предыдущем вычислении.

Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:

112² = (100 × 124) + 12² = 12 400 + 144 = 12 544

Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Магия математики: Как найти x и зачем это нужно"

Книги похожие на "Магия математики: Как найти x и зачем это нужно" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Артур Бенджамин

Артур Бенджамин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Артур Бенджамин - Магия математики: Как найти x и зачем это нужно"

Отзывы читателей о книге "Магия математики: Как найти x и зачем это нужно", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.