» » » » Андрей Иорданишвили - Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.


Авторские права

Андрей Иорданишвили - Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.

Здесь можно купить и скачать "Андрей Иорданишвили - Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании." в формате fb2, epub, txt, doc, pdf. Жанр: Медицина, издательство Литагент «Нордмедиздат»7504ac56-b368-11e0-9959-47117d41cf4b, год 2011. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Андрей Иорданишвили - Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.
Рейтинг:
Название:
Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.
Издательство:
неизвестно
Жанр:
Год:
2011
ISBN:
978-5-98306-092-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании."

Описание и краткое содержание "Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании." читать бесплатно онлайн.



В монографии представлены новые сведения о патогенетическом влиянии имплантированных в подкожную соединительную ткань животных стоматологических конструкционных материалов (пластмассы и металлы) на местные и системные клеточные и тканевые процессы. Проведен анализ местного и общего воздействия указанных имплантатов на ткани и организм животного. Определены различия в характере, объеме, динамике и степени устойчивости подкожной соединительной ткани экспериментальных животных, окружающей имплантаты из пластмасс горячей и холодной полимеризации и разных металлов, используемых в клинической стоматологии для изготовления дентальных имплантатов (титан) и зубопротезных конструкций (золото, нержавеющая сталь, базисные пластмассы). Выполнена сравнительная оценка уровня токсичности для организма изученных стоматологических конструкционных материалов на основе определения клеточной реакции в соединительной ткани и ткани печени в эксперименте.

При клиническом исследовании изучены местные и общие осложнения зубного протезирования в различные сроки после его завершения. Выявлены причины и проведен анализ динамики течения периимплантитов, а также состояния мягких и костной ткани альвеолярного отростка челюсти при различном использовании временных коронок из акриловых пластмасс в ближайший период после дентальной имплантации.






Таблица 2

Химический состав различных марок технически чистого титана



Содержание некоторых других элементов (кальций, алюминий, водород, молибден и др.) в химически чистом титане составляет не более тысячных процента [Галицкий Б.А. и др., 1968].

На воздухе за счет адсорбции атомов кислорода на поверхности титана спонтанно образуется оксидная пленка. В результате поверхность титана с химической точки зрения превращается в стойкое керамическое соединение.

Оксидный слой на поверхности титана определяет также его умеренно выраженные остеокондуктивные свойства. Многочисленные исследования показали, что на нем происходит адгезия и связывание белков, а также ионов кальция и фосфора [Д. Вильяме, Р. Роуф, 1978; Ф. Вортингтон, Б. Ланг, В. Лавелле, 1994;. C Stanford, J. Keller, M. Solursh, 1994].

Таким образом, оксидная пленка является базой для формирования остеокондуктивной матрицы, на которой может осуществляться митоз остеогенных клеток и последующая жизнедеятельность остеобластов и остеоцитов [K. Bowers, J. Keller, 1991; L. Cooper et al., 1999].

В хирургии титан широко используется с 1952 г., хорошо изучен и является основным материалом для производства различных имплантатов.

Материал для внутрикостного имплантата может считаться биосовместимым, если на его поверхности происходит формирование кост-ной ткани и создаётся интерфейс, способный к адекватному распределению функциональной нагрузки на окружающие имплантат ткани [L. Hench, R. Splinter, W. Allen, T. Greenlee, 1972; P. Ducheyne, 1987].

Исходя из этого определения, материал, пригодный для изготовления внутрикостных имплантатов, должен обладать определёнными физико-химическими, биологическими, биохимическими и биомеханическими свойствами.


Физико-химические свойства имплантационных материалов

С физико-химической точки зрения материал имплантата не должен:

– растворяться;

– подвергаться коррозии и структурным изменениям в жидких средах организма, а также остеокластической резорбции или иной деградации, связанной с жизнедеятельностью клеток организма;

– вызывать нежелательные электрохимические процессы в тканях и на поверхности раздела имплантат/окружающие ткани.


Растворимость и деградация материалов

Растворимость кальций-фосфатных соединений, как и других биоактивных материалов, очень мала и составляет 1,0x109 моль/дм3. Ещё меньшей растворимостью обладают стекло и ситаллы [Ершов Ю.А. и др., 1993]. Однако биоактивные материалы подвергаются остеокластической резорбции и, таким образом, являются биодеградируемыми.

Биоинертные и биотолерантные материалы можно считать практически нерастворимыми. Например, растворимость поверхностного оксидного слоя титана в физиологическом растворе составляет всего 0,043 нм в день [K.D. Allard, M. Ahrens, K. Heusler, 1975].


Таблица 3

Сроки биологической деградации биоактивных материалов



Кроме того, эти материалы не подвергаются остеокластической резорбции и поэтому являются небиодеградируемыми.

Кроме растворимости любой материал в той или иной степени подвержен диссоциации – распаду молекул в жидкой среде на ионы (атомы и молекулы, потерявшие или присоединившие электроны).

Суть диссоциации как физико-химического процесса заключается во взаимодействии молекул материала и растворителя (например, воды, тканевой жидкости или слюны), которое приводит к ослаблению взаимного притяжения положительно и отрицательно заряженных ионов, что вызывает распад части молекул растворяемого вещества на ионы.

Соотношение между числом распавшихся на ионы молекул и общим количеством молекул вещества называется степенью диссоциации [Б.М. Яворский, Ю.А. Селезнёв, 1989; Ю.А. Ершов и др., 1993].

Степень диссоциации и коррозия, под которой подразумевается разрушение или растворение вещества под химическим воздействием внешней среды или жидкости, являются одним из основных показателей пригодности того или иного материала для изготовления имплантатов.

В соответствии с Европейским стандартом (EN ISO 8891, 1995), коррозия материала, пригодного для изготовления имплантатов, должна быть менее 14,3 мкг/см2 в день. Согласно тестам, коррозия титана и его сплавов составляет 11 мкг/см в день [Б. Венц, 1998].


Биологические свойства имплантационных материалов

С биологической точки зрения материал имплантата, его химические элементы а также возможные продукты, образующиеся при его взаимодействии с биологической системой, не должны:

– вызывать патологических изменений в окружающих тканях во время их регенерации;

– нарушать гомеостаз организма, жизнедеятельность органов и тканей в течение всего периода функционирования;

– оказывать токсического, канцерогенного и аллергического воздействия на ткани и организм в целом.

Диссоциация приводит к диффузии ионов материала имплантата, что, естественно, оказывает влияние на процессы жизнедеятельности как окружающих имплантат тканей, так и организма в целом [А.И. Воложин, Г.В. Порядина, 1998].

Если суммировать химический состав биосовместимых материалов, то можно составить перечень ионов неметаллов, которые широко представлены в организме человека [Ю.А. Ершов и др., 1993; P. Марри, Д. Греннер, П. Мейес, В. Родуэл, 1993] – это Са2+, N+, H+, С+, сО32, РО4.

При этом можно допустить, что в результате диссоциации биосовместимого материала незначительное увеличение концентрации этих ионов не будет оказывать существенного влияния как на окружающие имплантат ткани, так и на организм в целом.

Некоторые металлы, входящие в состав биосовместимых материалов, например, железо, также широко представлены в организме и согласно классификации Ю.А. Ершова и соавт. (1993) являются макроэлементами. Содержание других – алюминия, кобальта, хрома, молибдена и ванадия – составляет от 10 3 до 10 5 % от общей массы организма человека.

Эти металлы являются микроэлементами. Концентрация титана и никеля в живых организмах ещё меньше, и они считаются ультрамикроэлементами [Ю.А. Ершов и др., 1993].

Таким образом, при введении в организм материалов, в составе которых имеются микро– и ультрамикроэлементы, содержание этих химических элементов может превышать их физиологический уровень. Следовательно, возможно определённое их воздействие на окружающие имплантат ткани и организм в целом.

Ионы железа являются одним из компонентов гемоглобина, миоглобина и различных ферментов. Кроме того, они принимают активное участие в трансформации аморфных кальций-фосфатных соединений в гидроксиапатит. Однако увеличение содержания железа может привести к нарушению окислительно-восстановительных процессов в тканях и оказывать токсическое воздействие на клетки.

Ионы алюминия ингибируют синтез АТФ, поэтому его повышенное содержание может существенно снизить метаболическую активность костной ткани и замедлить минерализацию [D. Williams, 1981].

Ионы алюминия могут угнетать эритропоэз и поражать центральную нервную систему. Считается, что их длительная аккумуляция в тканях головного мозга способна вызвать мутации генов AD3 и AD2, находящихся в 14-й и 19-й хромосомах, вследствие чего может развиться болезнь Альцгеймера.

Ионы кобальта накапливаются в почках, печени и поджелудочной железе. Значительное его количество содержит витамин В. Кобальт считается аллергенным металлом. Ионы кобальта ингибируют процесс преобразования аморфных кальций-фосфатных соединений в гидроксиапатит. Канцерогенная потенция кобальта в настоящее время не доказана.

Ионы хрома аккумулируются в печени, почках и костной ткани. Этот химический элемент обладает высокой аллергенной потенцией, способен проникать через клеточные мембраны, взаимодействовать с ДНК и индуцировать мутации генов [А.С. Смирнов, 2000].

Ионы никеля могут вызывать общую интоксикацию организма при попадании в кровь. При использовании материалов на основе никеля его ионы могут накапливаться в лёгких и разрушать митохондрии клеток [M. Bergman, В. Bergman, R. Soremark, 1980].

Кроме того, они являются одним из наиболее активных ингибиторов процесса образования гидроксиапатита и обладают высокой аллергенной и канцерогенной потенцией [Sinibaldi K. et al., 1976].

Ионы молибдена входят в состав некоторых ферментов, которые катализируют реакции, связанные с транспортом кислорода, и участвуют в метаболизме пуринов. Токсическое воздействие молибдена отмечается только при попадании его ингаляционным путём в лёгкие.

Ионы ванадия принимают участие в обмене жиров, минерализации костной ткани и зубов [Toth R.W., Parr G.R., Gardner L.K., 1985].

Повышенное содержание ванадия может оказывать выраженное цитотоксическое воздействие на ткани и вызывает разрушение некоторых ферментов.

Титан не является типичным и основным химическим элементом тканей и биомолекул организма, как, например, железо или кобальт. Титан может накапливаться в лёгких. Вместе с тем этот металл считается абсолютно биоинертным. Увеличение его концентрации даже в несколько тысяч раз не оказывает токсического, аллергенного и канцерогенного воздействия, не вызывает воспалительной реакции в окружающих тканях и не ингибирует процесс образования костного гидроксиапатита. Кроме того, ионы титана обладают умеренно выраженным бактериостатическим эффектом.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании."

Книги похожие на "Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Андрей Иорданишвили

Андрей Иорданишвили - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Андрей Иорданишвили - Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании."

Отзывы читателей о книге "Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.