» » » » Ирина Спивак - Экология. Повреждение и репарация ДНК: учебное пособие


Авторские права

Ирина Спивак - Экология. Повреждение и репарация ДНК: учебное пособие

Здесь можно купить и скачать "Ирина Спивак - Экология. Повреждение и репарация ДНК: учебное пособие" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Издательство Н-Лcc2d7790-481e-11e1-aac2-5924aae99221, год 2006. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Экология. Повреждение и репарация ДНК: учебное пособие
Издательство:
неизвестно
Жанр:
Год:
2006
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Экология. Повреждение и репарация ДНК: учебное пособие"

Описание и краткое содержание "Экология. Повреждение и репарация ДНК: учебное пособие" читать бесплатно онлайн.



Пособие соответствует государственному образовательному стандарту дисциплин «Экология» и «Физико-химические основы цитологии» подготовки бакалавров по направлению 140400 «Техническая физика».

В пособии описываются проблемы повреждения и репарации ДНК. Излагаются современные представления о развитии глобального ответа клетки на повреждения ДНК и рассматриваются механизмы, отвечающие за сохранение генетической стабильности организмов.

Главное внимание уделено анализу взаимосвязи и взаимозависимости трех Р ДНК-метаболизма: репликации, рекомбинации и репарации, включая биохимию, генетику и эволюцию этих процессов.

Предназначено для студентов дневной, очно-заочной, заочной форм обучения и экстернов, изучающих дисциплины «Экология» и «Физико-химические основы цитологии» в рамках подготовки бакалавров по направлению 140400 «Техническая физика».






5.1.2. Роль PCNA в эксцизионной репарации оснований

Хотелось бы отдельно остановиться она роли PCNA в процессах репарации.

Как уже говорилось, у высших эукариот эксцизионная репарация оснований протекает двумя альтернативными путями – с коротким и длинным ресинтезируемыми фрагментами. Их еще иногда называют ДНК-полимераза-β-зависимый и PCNA-зависимый пути.

PCNA-зависимый путь репарации АР-сайтов был совсем недавно реконструирован in vitro с участием АР-эндонуклеазы (АРЕ1), RFC, PCNA, FEN1, ДНК-полимеразы– δ и ДНК-лигазы I. При репарационной реакции в этой реконструированной системе преимущественно замещаются два нуклеотида. PCNA является обязательным участником этой системы и подавление его активности специфическими антителами приводит к ингибированию репарации АР-сайтов в клеточных экстрактах млекопитающих.

У дрожжей показано, что некоторые мутации в гене PCNA приводят к резкому снижению репарации после действия MMS (метил-метан-сульфоната, очень сильного мутагена), не затрагивая при этом их ростовой активности. К настоящему времени сложилось представление, что у дрожжей все пути BER PCNA-завимые.

Таким образом, polβ в процессе BER принимает участие и в PCNA-зависимом и в PCNA-независимом (polβ—завимом) путях. PCNA-зависимых путей тоже 2 – в первом из них вставляется 2 нуклеотида, а в другом – около 10–12 нуклеотидов. Может быть, это связано с тем, какая из полимераз – δ или ε будут использованы при этом, но прямых данных об этом нет, так как в системе in vitro замена одной на другую на уровень репарации не влияла.

Установлено, что PCNA может напрямую взаимодействовать с большой субъединицей RFC (состоящего из 5 субъединиц), экзонуклеазой FEN1, ДНК-полимеразой-δ (третья субъединица) и ДНК-лигазой I. Это взаимодействие происходит благодаря наличию во всех этих белках консервативного мотива QXX(I/L/M)XX(F/N)(F/Y), содержащего 8 аминокислотных остатков. Наличие этого мотива в различных белках представлено на рис. 7. PCNA служит молекулярным адаптером для привлечения всех этих белков в зону репаративной реакции. Данный мотив был обнаружен и у достаточно большого числа других белков – MSH2, MLH1 (белков, участвующих в эксцизионной репарации неспаренных оснований, MMR), р21, GADD45, циклина D, ДНК-цитозин-5-метил-трансферазы (MCMT), эндонуклеазы XPG. Для р21 опубликовано очень подробное описание его взаимодействия с PCNA, включающее вовлечение в этот процесс вторичной структуры белков.

На той же модели было показано, что эффективность репарации резко падает при использования в экспериментальной системе in vitro мутантных форм FEN1 и лигазы I, у которых не нарушена ферментативная активность, а только поврежден сайт их связывания с PCNA.


Рисунок 7. Белки, имеющие сайт QXX(I/L/M)XX(F/N)(F/Y) для связывания с PCNA


Остается неясным, как все эти молекулы с PCNA-связывающим мотивом умудряются связаться с PCNA одновременно – ведь PCNA является гомотримером и может быть одновременно связан по данному мотиву не более, чем с тремя белками, а таких белков описано уже как минимум 15. Можно предположить, что в системе BER PCNA преимущественно связан с ДНК-полимеразой-δ(ε), FEN1 и лигазой I. Связывание же со всеми остальными белками, вероятнее всего, зависит от места и времени протекания реакции, в которую вовлечен PCNА и данные белки.

5.1.3. BER, спаренная с репликацией

Тот же самый PCNA-связывающий мотив найден и в двух недавно описанных человеческих гликозилазах UNG2 и MYH1. Главными субстратами для этих гликозилаз служат некорректно встраивающиеся в процессе репликации урацил напротив аденина и аденин напротив 8-оксигуанина соответственно. UNG2 содержит PCNA-связывающий мотив в своей N-концевой части и является основной ДНК-урацил-гликозилазой человека. Напротив, N-конец UNG1, митохондриальной формы урацил-гликозилазы, содержит сигнал, указывающий на ее митохондриальную локализацию, но не PCNA-связывающий мотив. MYH является гомологом MutY E.coli, все ее формы несут PCNA-связывающий мотив в своем С-конце, вне зависимости от наличия у них сигнала митохондриальной локализации.

Предложено два объяснения возможного механизма, при котором эти две гликозилазы связываются с PCNA. Первое – обе эти гликозилазы могут преимущественно привлекать PCNА в район АР-сайта после выщепления неправильного основания, и таким образом направлять реакцию репарации по ее PCNA-зависимой ветви. Вторая возможность состоит в том, что UNG2 и MYH благодаря связыванию с PCNA могут ассоциироваться с «машиной репликации». Недавние исследования показали, что UNG2 может связываться с «машиной репликации» и через PCNA и через RPA (replication protein A, эукариотический гомолог белка SSB прокариот, состоящий из 3 субъединиц). Это больше подходит ко второму объяснению, но не отбрасывает и первого.

Урацил, являющийся субстратом UNG2, может попадать в ДНК двумя путями – при встраивании урацил-трифосфата во время репликации и дезаминировании уже встроенного цитозина. В первом случае, вновь встроенный урацил спаривается с аденином, и частота этого встраивания зависит от размера пула предшественника. Впрочем, надо помнить, что предшественник урацила совершенно «легально» постоянно присутствует в клетке и его уровень регулируется физиологическими механизмами. Во втором случае урацил оказывается спаренным с гуанином, причем 100–500 таких пар образуется в человеческой клетке ежедневно. UNG2 способна удалять урацил из обоих положений, две другие гликозилазы TDG и MED1 (MBD4) – только во втором случае (U/G). То есть урацил, встроившийся в процессе репликации может быть удален только UNG2, а урацил, появившийся в результате дезаминирования цитозина может быть убран тремя независимыми гликозилазами.

Похожая картина и с MYH1. Основной ее мишенью является аденин напротив 8-оксигуанина. Эта неправильная пара также образуется именно в процессе репликации ДНК. Здесь нужно отметить, что полимеразы ε и δ обычно вставляют именно аденин напротив 8-оксигуанина, а полимераза β – цитозин. Связывание MYH1 с PCNA может облегчать репарацию неправильного спаривания, возникшую в процессе репликации. Другая гликозилаза – OGG1 (FPG E.coli) способствует выщеплению 8-оксоG, который возникает при прямом окислении двунитевой ДНК, напротив цитозина, но не напротив аденина. OGG1 не несет PCNA-связывающего мотива и не нуждается в его помощи для выщепления 8-оксоG. Хотя пока нет точных экспериментальных подтверждений того, что MYH1 связывается с PCNA или с «машиной репликации», но аналогия с UNG2 напрашивается сама собой. Гликозилазы, несущие PCNA-связывающий мотив участвуют в репарации повреждений, возникающих именно в процессе репликации, в отличие от тех гликозилаз, которые подобные повреждения репарировать не способны.


Рисунок 8. Схема репарации, спаренной с репликацией.


Таким образом две эти гликозилазы служат для специфической репарации, спаренной с репликацией, путем прямого связывания с репликационной машиной через PCNA. Схема этого процесса оитображена на рис. 8.

Остается нерешенным еще один вопрос – как эти две гликозилазы участвуют в репарации АР-сайтов. После действия UNG2 может включаться как PCNA-зависимый так и polβ зависимый процесс, так что тут все более-менее ясно. А вот MYH отличается тем, что не может использовать PCNA-зависимый путь, при котором синтез ведет polδ, так как polδ обязательно снова вставит аденин напротив 8-оксоG, и нарушение ДНК будет самовоспроизводиться в процессе репарации. Для репаративного синтеза может быть использован только polβ-зависимый путь, так как только polβ вставит напротив 8-оксоG цитозин

5.2. Эксцизионная репарация неспаренных оснований (mismatch repair, MMR)

Продолжая изучать эксцизионную репарацию ДНК, остановимся на репарации неспаренных оснований (mismatch repair, MMR. На русский название этого типа репарации часто переводят как коррекция неспаренных оснований, сокращенно КНО. Основная роль MMR состоит в поддержании стабильности генома и снижении количества потенциально возникающих мутаций.

Довольно часто (у Е. coli один раз на 104 пар нуклеотидов, у эукариот еще чаще) во время репликации ДНК происходят ошибки спаривания, в результате которых вместо комплементарной пары нуклеотидов А + Т или G + C в дочернюю цепь ДНК оказываются включенными нуклеотиды, некомплементарные нуклеотидам в материнской нити и образующие с ними неправильные пары. Такие пары называют мисмэтчами – mismatch. Как уже говорилось ранее, исправление подобных ошибок самими полимеразами или автономными экзонуклеазами не может убрать их все, и в ДНК по окончании репликации остаются мисмэтчи. Но неспаренные основания в ДНК могут возникать и в результате других событий. Например, при модификации оснований ДНК или их предшественников продуктами клеточного метаболизма или экзогенными повреждающими агентами, если эти поврежденные основания не были отрепарированы системой BER. Особенности процесса рекомбинации мы будем обсуждать позже, но неспаренные основания могут возникать и при рекомбинационной интеграции однонитевого участка ДНК в неабсолютно идентичную ДНК партнера по рекомбинации. Все эти события приведут к образованию гетеродуплексной ДНК – субстрата для ферментов, исправляющих мисмэтчи.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Экология. Повреждение и репарация ДНК: учебное пособие"

Книги похожие на "Экология. Повреждение и репарация ДНК: учебное пособие" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ирина Спивак

Ирина Спивак - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ирина Спивак - Экология. Повреждение и репарация ДНК: учебное пособие"

Отзывы читателей о книге "Экология. Повреждение и репарация ДНК: учебное пособие", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.