» » » » Аурика Луковкина - Высшая математика. Шпаргалка


Авторские права

Аурика Луковкина - Высшая математика. Шпаргалка

Здесь можно купить и скачать "Аурика Луковкина - Высшая математика. Шпаргалка" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Литагент «Научная книга»5078daf4-9e1a-102b-b665-7cd09fa97345. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Высшая математика. Шпаргалка
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Высшая математика. Шпаргалка"

Описание и краткое содержание "Высшая математика. Шпаргалка" читать бесплатно онлайн.



Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.






Высшая математика. Шпаргалка

1. Основные понятия. Системы координат. Прямые линии и их взаимное расположение

Координата точки – это величина, определяющая положение данной точки на плоскости, на прямой или кривой линии или в пространстве. Значение координаты зависит от выбора начальной точки, от выбора положительного направления и от выбора единицы масштаба.

Прямоугольная система координат состоит из двух взаимно перпендикулярных прямых – осей, точка их пересечения – начало координат О, ось ОХось абсцисс, ось ОYось ординат. На осях выбираются масштаб и положительное направление.


Рис. 1


Системы координат

Положение точки М определяется двумя координатами: абсциссой х и ординатой у. Записывается так: М(х, у). Оси координат образуют четыре координатных угла I, II, III, IV. Если точка находится в I координатном угле (квадранте), то и абсцисса, и ордината ее положительные, если – во II квадранте, то абсцисса отрицательна, а ордината положительна, если в – III квадранте, и абсцисса, и ордината отрицательны, если – в IV квадранте, положительна абсцисса, а ордината отрицательна. У точки, лежащей на оси ординат, абсцисса равна нулю, и наоборот, если точка лежит на оси абсцисс, то ее ордината равна нулю.

Косоугольной системой координат аналогична прямоугольной, только оси координат пересекаются под углом не равным прямому. Прямоугольная и косоугольная системы относятся к декартовой системе координат.

Полярная система координат состоит из полюса О и полярной оси ОХ, проведенной из полюса. Положение точки определяется полярным радиусом ρ (отрезок ОМ) и полярным углом φ. Для полярного угла берется его главное значение (от –π до π). Числа ρ, φ называются полярными координатами точки М.

Связь между координатами точки в прямоугольной и полярной системах координат: x = r cosφ, y = r sinφ или:




Пусть имеются две точки М1(х1, у1) и М2(х2, у2). Расстояние между точками:



Общее уравнение прямой линии (система координат прямоугольная): Ах + Ву + С = 0 (А и В одновременно не равны нулю).

Если В не равно нулю, то уравнение прямой: у = ах + b (здесь а = – А / В, b = – С / В). Здесь а есть тангенс угла наклона прямой к положительному направлению оси абсцисс, b равно длине отрезка от начала координат до точки пересечения рассматриваемой прямой с осью ординат. Уравнение прямой, параллельной оси абсцисс: у = b, уравнение оси абсцисс: у = 0; уравнение прямой, параллельной оси ординат: х = с, уравнение оси ординат: х = 0.

2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой

1. Пусть даны три точки А1 (х1, у1), А2 (х2, у2), А3 (х3, у3), тогда условие нахождения их на одной прямой:



либо (х2 – х1) (у3 – у1) – (х3 – x1) (у2 – у1) = 0.

2. Пусть даны две точки А1 (х1, у1), А2 (х2, у2), тогда уравнение прямой, проходящей через эти две точки:



(х2 – х1)(у – у1) – (х – х1)(у2 – у1) = 0 или (х – х1) / (х2 – х1) = (у – у1) / (у2 – у1).

3. Пусть имеются точка М (х1, у1) и некоторая прямая L, представленная уравнением у = ах + с. Уравнение прямой, проходящей параллельно данной прямой L через данную точку М:

у – у1 = а(х – х1).

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М, описывается уравнением А(х – х1) + В(у – у1) = 0.

Уравнение прямой, проходящей перпендикулярно данной прямой L через данную точку М:

у – у1 = –(х – х1) / а

или

а(у – у1) = х1 – х.

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М(х1, у1), описывается уравнением А (у – у1) – В(х – х1) = 0.

4. Пусть даны две точки А1 (х1, у1), А2 (х2, у2) и прямая, заданная уравнением Ах + Ву + С = 0. Взаимное расположение точек относительно этой прямой:

1) точки А1, А2 лежат по одну сторону от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют одинаковые знаки;

2) точки А1, А2 лежат по разные стороны от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют разные знаки;

3) одна или обе точки А1, А2 лежат на данной прямой, если одно или оба выражения соответственно (Ах1 + + Ву1 + С) и (Ах2 + Ву2 + С) принимают нулевое значение.

5. Центральный пучок – это множество прямых, проходящих через одну точку М (х1, у1), называемую центром пучка. Каждая из прямых пучка описывается уравнением пучка у – у1 = к (х – х1) (параметр пучка к для каждой прямой свой).

Все прямые пучка можно представить уравнением: l(y – y1) = m(x – x1), где l, m – не равные одновременно нулю произвольные числа.

Если две прямые пучка L1 и L2 соответственно имеют вид (А1х + В1у + С1) = 0 и (А2х + В2у + С2) = 0, то уравнение пучка: m1(А1х + В1у + С1) + m2(А2х + В2у + С2) = 0. Если прямые L1 и L2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

6. Пусть даны точка М (х1, у1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояние d от этой точки М до прямой:


3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

Полярными параметрами прямой L будут полярное расстояние р (длина перпендикуляра, проведенного к данной прямой из начала координат) и полярный угол α (угол между осью абсцисс ОХ и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ах + Ву + С = 0: полярное расстояние



полярный угол α



причем при C > 0 берется верхний знак, при C < 0 – нижний знак, при С = 0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Высшая математика. Шпаргалка"

Книги похожие на "Высшая математика. Шпаргалка" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Аурика Луковкина

Аурика Луковкина - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Аурика Луковкина - Высшая математика. Шпаргалка"

Отзывы читателей о книге "Высшая математика. Шпаргалка", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.