» » » » А. Лиакумович - Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию


Авторские права

А. Лиакумович - Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию

Здесь можно купить и скачать "А. Лиакумович - Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство ЛитагентБИБКОМd634c197-6dc9-11e5-ae5f-00259059d1c2. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию"

Описание и краткое содержание "Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию" читать бесплатно онлайн.



В монографии изложены результаты исследований дегидрирования этилбензола с использованием физических воздействий, рассмотрен предполагаемый механизм интенсификации процесса при применении физических воздействий.






Расчетами показано, что более высокие скорости диффузии могут быть объяснены возрастанием фактора А при неизменной энергии активации. Miklavc пришел к выводу, что отмечаемое ускорение может происходить в результате влияния вращательного возбуждения на геометрию столкновений [57].

2. Влияние локальных высоких температур:

– на микроскопическом уровне было предположено, что в некоторых случаях микроволновая активация происходит из-за локальных перегревов, образованных за счет диэлектрических потерь на молекулярном уровне [58];

– или на макроскопическом уровне, потому что это важно, когда речь идет о сильном микроволновом поглощении твердыми катализаторами, такими, как графит или «Магтрив» (на основе CrO2) [59, 60], где высокие температуры распределены неравномерно. Изменение электронных свойств катализаторов и даже структуры уже предложены, однако споры по поводу эффектов МВИ в гетерогенном катализе остаются [61].

3. Падение энергии активации. Учитывая вклад энтропии иэнтальпии в величину ∆G (∆G = ∆H – T∆S), можно предсказать, что эта величина будет падать в реакции, индуцированной микроволнами. Это явление более наглядно, когда идет сравнение с классическим нагревом вследствие поляризации диполей. Lewis и другие экспериментально подтвердили такие предположения после измерения зависимости скоростей реакции от температуры для мономолекулярного имидирования полиаминной кислоты [62] (урав. 1.3, рис. 1.2, табл. 1.2):



где NMP – н-метилпироллидон.

Кажущаяся энергия активации снижается. Также это явление, падение ∆G, наблюдалось в реакциях разложения гидрокарбоната натрия в водном растворе [63].

Некоторые объясняют снижение энергии активации под действием МВИ более сильной стабилизацией переходного состояния по сравнению с основным состоянием.


Рисунок 1.2 − Кинетические зависимости первого порядка для реакций имидирования с МВИ и с классическим нагревом



Таблица 1.2

Результаты обработки кривых Аррениуса, представленных на рис. 1.2

Применение микроволнового излучения в химии

Использование МВИ позволяет в десятки раз ускорить осуществление многих органических реакций, повысить выход целевого продукта, направить реакцию по нужному пути (с использованием микроволнового катализа). МВИ применяют в органическом синтезе при проведении реакций в условиях нормального давления, а также под повышенным давлением с использованием автоклавов, изготовленных из прозрачных к микроволновому полю материалов. При этом учитывают, во-первых, способность МВИ вызывать быстрый и значительный разогрев многих органических растворителей и, вовторых, способность МВИ активировать молекулы реагентов и особенно вызывать их диссоциацию на ионы и свободные радикалы. Результаты исследований свидетельствуют о том, что значения констант скоростей некоторых реакций в условиях МВИ возрастают примерно в 20-30 раз и более (в области температур 120-170 °C) [64].

Эффект микроволн нашел применение и в катализе, а первое сообщение об изменении селективности превращения 2-метилпентана было представлено в 1988 году [65]. Позже были сообщения о различной избирательности при превращении небольших органических молекул [66, 67]. С этого времени микроволновый нагрев катализаторов был применен для ряда систем. В одной из таких работ описано исследование, проведенное группой ученых (И.Х. Бикбулатов, Р.Р. Даминев, Н.С. Шулаев), которые изучали возможность осуществления эндотермических гетерогенно-каталитических процессов под действием ЭМИ СВЧ на примере процесса дегидрирования бутенов [68]. Было показано, что катализатор следует использовать как элемент, трансформирующий электромагнитную энергию в тепловую, необходимую для проведения химической реакции. В этом случае была успешно применена способность МВИ избирательно нагревать вещества. В поле СВЧ при нагреве полярного катализатора температура сырья оставалась намного ниже, чем температура катализатора и, таким образом, процесс выполнялся энергетически эффективнее по сравнению с обычным тепловым нагревом [69]. Установлено, что при этом каталитическая активность, химический состав и величина удельной поверхности катализатора К-16У, подвергшейся воздействию СВЧ, не меняется. В результате этих исследований С.Н. Шулаевым впервые были получены зависимости, связывающие конструктивные, технологические и физические параметры электродинамических реакторов с распределением температурных полей и степенью превращения при гетерофазном катализе УВ в поле СВЧ [70].

В [38] рассмотрено использование микроволнового нагрева в гетерогенном газофазном катализе в реакциях окислительного соединения метана, окисления монооксида углерода. Проведение этой реакции с обычным нагревом, как правило, приводит к конверсии метана 10-15 % при избирательности 80-85 %. Первое сообщение о применении микроволнового нагрева в этой реакции сделал Bond со своими коллегами с использованием катализатора алюмината натрия [71]. Было подтверждено, что при микроволновом нагреве, используемом вместо обычного нагрева, образование CО2 происходит при температуре ниже почти на 125 °C с высокой избирательностью. Roussi и др. также показали увеличение избирательности в высшие УВ на обработанных МВИ катализаторах при окислительном соединении метана [72].

Исследования сокращения выбросов NOx, проведенные с применением медных и никелевых катализаторов [73], а также с Pt/Al2O3 катализатором [74], показали увеличение активности при микроволновом нагревании. Интересные результаты показали Zhang и Tang; ими было проведено прямое разложение на легированном металле с цеолитами [75].

В работах [76-80] по использованию микроволн для очистки выхлопных газов показано, что микроволновая обработка катализатора, используемого для снижения выбросов автомобилей сразу после запуска двигателя, весьма эффективна, отмечена возможность перехода на аномально низкие температуры.

В работе [81] представлены результаты исследований воздействия МВИ с частотами 3,4 и 2,45 ГГц на углеродные носители катализаторов различной природы и сажу, образовавшуюся в результате работы дизельного двигателя. Показано, что частицы углеродсодержащей сажи, отобранные из выхлопа дизельного двигателя и нанесенные на керамику, которая прозрачна для МВИ, интенсивно поглощают излучение.

В работе [82] в качестве альтернативы традиционным методам нагрева и отверждения использовали метод отверждения под действием высокочастотного (ВЧ) электрического поля. Метод ВЧ нагрева полимерных материалов основан на том, что полярные группы и сегменты молекул диэлектрического материала, помещенного в переменное электрическое поле, ориентируются вместе с изменением его полярности. Другие группы и молекулы, а также тепловое движение препятствуют ориентации. Энергия, которая затрачивается на преодоление препятствий, рассеивается в материале и нагревает его. Интенсивность нагрева повышается с увеличением частоты колебаний и напряженности электрического поля. Преимущество ВЧ нагрева состоит в том, что прогрев происходит во всем объеме одновременно, а степень нагрева может регулироваться с высокой точностью [83]. В научно-технической литературе представлены достаточно глубокие исследования особенностей процессов отверждения эпоксидных композиций под действием МВИ. Наиболее серьезные работы проведены с использованием в качестве сшивающих агентов 4,4-диаминдифенилметана, 4,4-диаминодифенилсульфона, мфенилендиамина и т.д. [84]. При этом мощность излучения изменялась в пределах 20-100 Вт, а частота импульсов от 20 Гц до 20 кГц. Установлено, что микроволновое отверждение происходит аналогично термическому отверждению, при этом использование импульсного излучения повышает эффективность сшивания. Поглощаемая мощность в ходе отверждения сначала возрастает, а потом уменьшается, что объясняется подавлением процесса биполярной релаксации образующимися межмолекулярными сшивками.

В работе [85] для интенсификации процессов полимеризации впервые использовано в качестве нагрева МВИ и получены полимеры СТ и 2-,4-винилпиридинов. Для микроволнового нагрева полимеризационной массы использовалась система «Discover LabMate» (СEM Corporation, США). При синтезе мощность МВИ составляла 300 Вт, частота 2450 МГц. После микроволнового синтеза выделение и анализ полимеров проводились аналогично полимерам, полученным с использованием термического нагрева. С целью установления закономерностей влияния МВИ на протекание процессов радикальной полимеризации и свойства получаемых гомополимеров и сополимеров в условиях, идентичных традиционным методам, в поле СВЧ были получены гомополимеры 2-,4-винилпиридинов, СТ и их сополимеры различного состава. В условиях микроволнового нагрева полистирол получается практически с тем же самым выходом, но за более короткое время. В то же время замена термического нагрева на микроволновый приводит к увеличению степени конверсии мономера и существенному повышению молекулярной массы полимера, особенно при использовании в качестве инициатора динитрила азобисизомасляной кислоты (ДАК). МВИ оказывает более эффективное воздействие на процессы полимеризации более полярных мономеров. На процесс сополимеризации 4-винилпиридина со СТ МВИ также оказывает значительное влияние. Полученные данные свидетельствуют об интенсификации процесса при замене термического нагрева на микроволновый, что позволяет снизить время сополимеризации в два раза. Однако при получении сополимеров с использованием МВИ существенное влияние на их молекулярно-массовые характеристики оказывает используемый инициатор. При получении сополимеров 4винилпиридина со СТ в условиях микроволнового синтеза с использованием ДАК в качестве инициатора процесса полимеризации молекулярные массы полученных продуктов практически не изменяются по сравнению с аналогичными образцами, полученными в условиях термического нагрева. В то время как при использовании в качестве инициатора пероксида бензоила с применением МВИ молекулярные массы полимеров возрастают в 1,1-2,1 раза. Таким образом, использование МВИ в сочетании с различными инициаторами процесса сополимеризации позволяет изменить молекулярно-массовые характеристики и состав получаемого сополимера, что дает возможность целенаправленно синтезировать полимеры-носители.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию"

Книги похожие на "Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора А. Лиакумович

А. Лиакумович - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "А. Лиакумович - Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию"

Отзывы читателей о книге "Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.