» » » » Е. Бессолицына - Биохимия метаболизма. Учебное пособие


Авторские права

Е. Бессолицына - Биохимия метаболизма. Учебное пособие

Здесь можно купить и скачать "Е. Бессолицына - Биохимия метаболизма. Учебное пособие" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство ЛитагентРидеро78ecf724-fc53-11e3-871d-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Биохимия метаболизма. Учебное пособие
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Биохимия метаболизма. Учебное пособие"

Описание и краткое содержание "Биохимия метаболизма. Учебное пособие" читать бесплатно онлайн.



Учебник описывает последовательность и механизмы реакций основных метаболитических путей энергетического и пластического обмена. Описываются ингибиторы реакций и механизмы их действия, регуляция скорости метаболитических путей. В разработке использовались как классические данные о метаболитических путях, так и новая информация об механизмах реакций и их регуляции. Учебник предназначен для студентов любых ВУЗов для изучения биохимии, в качестве как основной, так и дополнительной литературы.






Реакцию окисления малата осуществляет малатдегидрогеназа. Малатдегидрогеназа катализирует превращение малата в оксалоацетат, реакция идет с участием NAD+. Хотя равновесие этой реакции сильно сдвинуто в направлении малата, реально она протекает в направлении оксалоацетата, поскольку он вместе с NADH постоянно потребляется в других реакциях.

Ферменты цикла лимонной кислоты, за исключением α-кетоглутарат и сукцинатдегидрогеназы, обнаруживаются и вне митохондрий. Однако некоторые из этих ферментов (например, малатдегидрогеназа) отличаются от соответствующих митохондриальных ферментов.

Таким образом, два атома углерода поступают в цикл в виде ацетил-СоА и два атома углерода покидают цикл в виде СО2 при последовательных реакциях декарбоксилирования.

Суммарная реакция цикла трикарбоновых кислот:

Ac-СoA+3NAD++FAD++ГДФ →2CO2+3NADH+FADH2+ГТФ

Суммарная реакция полного окисления глюкозы до CO2:

Глюкоза +2АТФ +10NAD+ +2FAD+ +4АДФ+2ГДФ→ 6CO2+2АДФ +4АТФ +10NADH+2FADH2+2ГТФ

Регуляция скорости цикла трикарбоновых кислот

Регуляция скорости цикла трикарбоновых кислот осуществляется на уровне регуляции скорости нескольких реакций цикла. В большинстве случаев скорость функционирования метаболических циклов определяется их начальными этапами.

Полагают, что так же обстоит дело и в случае цикла лимонной кислоты. Общая скорость его функционирования во многих тканях определяется первой реакцией: синтезом цитрата. Разумеется, скорость цитратсинтазной реакции регулируется концентрацией ее субстратов, в частности концентрацией ацетил-СоА, а она в свою очередь зависит от активности пируватдегидрогеназного комплекса. Регулируется эта реакция также концентрацией второго субстрата – оксалоацетата; возможно даже, что этот фактор играет главную роль, поскольку концентрация оксалоацетата в митохондриях очень низка и зависит от метаболических условий. На активность цитратсинтазы влияет также концентрация сукцинил-СоА, одного из более поздних промежуточных продуктов цикла. Как только концентрация сукцинил-СоА превышает нормальный стационарный уровень, цитратсинтаза сразу же ингибируется, поскольку сукцинил-СоА понижает ее сродство к ацетил-СоА, то есть сукцинил-СоА является отрицательным аллостерическим регулятором (ингибитором) цитратсинтазы, уменьшающим ее активность. Жирные кислоты, служащие предшественниками ацетил-СоА тоже ингибируют цитратсинтазу, являясь отрицательными аллостерическими эффекторами. В некоторых клетках роль аллостерических ингибиторов цитратсинтазы играют цитрат и NADH.

У большей части клеток окисление изоцитрата до α-кетоглутарата и CO2, которое может происходить под действием двух разных изоцитратдегидрогеназ, регулируется, по-видимому, путем аллостерической стимуляции NAD-зависимого фермента, вызываемой AДФ. В то же время NADH и NADPH действуют как отрицательные аллостерические модуляторы изоцитратдегидрогеназной активности.

Ингибитором активности α-кетоглутаратдегидрогеназного комплекса служит продукт реакции сукцинил-СоА. Таким образом, в цикле лимонной кислоты регулируются, по меньшей мере, три стадии, и только в своих деталях эта регуляция у разных типов клеток несколько различается.

Скорость гликолиза в нормальных условиях согласована со скоростью функционирования цикла лимонной кислоты: в клетке до пирувата расщепляется ровно столько глюкозы, сколько необходимо для того, чтобы обеспечить цикл лимонной кислоты «топливом», т. е. ацетильными группами ацетил-СоА. Ни пируват, ни лактат, ни ацетил-СоА обычно не накапливаются в аэробных клетках в больших количествах; их концентрации поддерживаются на некоем постоянном уровне, соответствующем динамическому равновесию. Согласованность между скоростью гликолиза и скоростью функционирования цикла лимонной кислоты объясняется не только тем, что первый процесс ингибируется высокими концентрациями АТФ и NADH, т. е. компонентами, общими для гликолитической и дыхательной стадий окисления глюкозы; определенную роль в этой согласованности играет также и концентрация цитрата. Продукт первой стадии цикла лимонной кислоты – цитрат является аллостерическим ингибитором фосфофруктокиназы, катализирующей в процессе гликолиза реакцию фосфорилирования фруктозо-6-фосфата.

Механизмы анаплеротических реакций

Цикл лимонной кислоты – это еще и один из амфиболических путей. Он используется не только для окислительного катаболизма, т. е. для расщепления углеводов, жирных кислот и аминокислот, но может служить также первой стадией многих биосинтетических путей, для которых он является источником предшественников. Под воздействием ряда важных вспомогательных ферментов некоторые промежуточные продукты цикла лимонной кислоты, главным образом α-кетоглутарат, сукцинат и оксалоацетат, могут удаляться из цикла и использоваться в качестве предшественников аминокислот. Скорость функционирования цикла лимонной кислоты при этом, казалось бы, должна снижаться, поскольку такой отток промежуточных продуктов из цикла должен понижать их концентрацию в клетке. В действительности же этого не происходит, так как убыль промежуточных продуктов цикла восполняется благодаря действию другого набора ферментов. При нормальных условиях реакции, отвлекающие промежуточные продукты из цикла, и реакции, восполняющие их убыль, находятся в состоянии динамического равновесия, так что концентрация этих продуктов в митохондриях остается более или менее постоянной.

Специальные ферментативные реакции, обеспечивающие пополнение пула промежуточных продуктов цикла лимонной кислоты, носят название анаплеротических («пополняющих») реакций. Наиболее важная реакция такого рода в животных тканях это ферментативное карбоксилирование пирувата за счет СО2 с образованием оксалоацетата катализирует эту обратимую реакцию фермент пируваткарбоксилаза. Если для цикла лимонной кислоты не хватает оксалоацетата или какого-нибудь другого промежуточного продукта цикла, то карбоксилирование пирувата стимулируется и запас оксалоацетата растет. Для ферментативного присоединения карбоксильной группы к молекуле пирувата требуется энергия. Источником ее служит сопряженное с данной реакцией расщепление АТФ до AДФ и фосфата. Поскольку суммарная реакция сопровождается лишь незначительным изменением стандартной свободной энергии, мы можем заключить, что свободная энергия, необходимая для присоединения карбоксильной группы к пирувату, примерно равна свободной энергии, выделяющейся при гидролизе АТФ. Пируваткарбоксилаза очень сложный фермент. Его молекулярная масса равна приблизительно 650000 Da. Молекула фермента содержит четыре кофермента. Каждый из них состоит из одной молекулы витамина биотина, ковалентно связанного (пептидной связью) с аминогруппой особого остатка лизина, находящегося в активном центре. Свободный СО2, предшественник новой карбоксильной группы оксалоацетата, сначала активируется путем присоединения к одному из атомов азота в молекуле биотина. Эта активация, связанная с расходованием АТФ, составляет первую стадию реакции, катализируемой пируваткарбоксилазой. На второй стадии, протекающей также в активном центре фермента, новая карбоксильная группа, ковалентно связанная с простетической группой фермента, переносится на пируват с образованием оксалоацетата. Пируваткарбоксилаза принадлежит к регуляторным ферментам. В отсутствие ацетил-СоА, который служит для нее положительным модулятором, скорость катализируемой ею прямой реакции, приводящей к образованию оксалоацетата, очень невелика. Избыток же ацетил-СоА. поставляющего «топливо» для цикла лимонной кислоты, стимулирует пируваткарбоксилазную реакцию; в результате этого образуется больше оксалоацетата и цикл использует больше ацетил-СоА в цитратсинтазной реакции. Пируваткарбоксилазная реакция – главная анаплеротическая реакция в печени и почках. В миокарде и в мышцах протекают другие анаплеротические реакции. Одна из таких реакций катализируется фосфоенолпируваткарбоксикиназой. В этой реакции происходит расщепление фосфоенолпирувата – сверхвысокоэнергетического фосфорилированного соединения, образующегося в процессе гликолиза. Высвобождаемая энергия используется для карбоксилирования с образованием оксалоацетата, а ее остаток запасается в форме ГТФ.

Глиоксилатный цикл – одна из модификаций цикла лимонной кислоты

У растений и некоторых микроорганизмов, например у Е. coli, ацетильные группы часто служат не только высокоэнергетическим «топливом», но и источником метаболитов, из которых строятся углеродные скелеты углеводов. В таких клетках действуют два варианта цикла лимонной кислоты: 1) обычная последовательность реакций, в ходе которой происходит окисление ацетил-СоА до СО2 свойственная большинству тканей, и 2) особая ее модификация, называемая глиоксилатным циклом (последовательность реакций глиоксилатного цикла представлена на рисунке 9).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Биохимия метаболизма. Учебное пособие"

Книги похожие на "Биохимия метаболизма. Учебное пособие" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Е. Бессолицына

Е. Бессолицына - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Е. Бессолицына - Биохимия метаболизма. Учебное пособие"

Отзывы читателей о книге "Биохимия метаболизма. Учебное пособие", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.