» » » » Аманда Гефтер - На лужайке Эйнштейна. Что такое ничто, и где начинается всё


Авторские права

Аманда Гефтер - На лужайке Эйнштейна. Что такое ничто, и где начинается всё

Здесь можно купить и скачать "Аманда Гефтер - На лужайке Эйнштейна. Что такое ничто, и где начинается всё" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентCorpus47fd8022-5359-11e3-9f30-0025905a0812, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Аманда Гефтер - На лужайке Эйнштейна. Что такое ничто, и где начинается всё
Рейтинг:
Название:
На лужайке Эйнштейна. Что такое ничто, и где начинается всё
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-17-087484-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "На лужайке Эйнштейна. Что такое ничто, и где начинается всё"

Описание и краткое содержание "На лужайке Эйнштейна. Что такое ничто, и где начинается всё" читать бесплатно онлайн.



Вселенная выглядит так, словно ее объем конечен, и время ее существования также конечно. Значит, вопрос о ее возникновении не лишен смысла: может быть, ей предшествовало ничто? Ни пространства, ни времени, ни материи, ни существования? Можно ли себе представить ничто? Такой неожиданный вопрос задал Аманде Гефтер ее отец Уолтер Гефтер, когда ей было всего пятнадцать лет. Так получилось, что этот странный вопрос определил всю ее дальнейшую судьбу. Аманда стала погружаться в пучину современной физики и разбираться в хитросплетениях современной философии. Принято считать, что современная физика делается так далеко за пределами обыденного опыта, что только строгость и мощь используемого ею математического аппарата может обеспечить физику-теоретику подобие путеводной нити в его исследованиях, а философия может ему только помешать. Аманда Гефтер блестяще опровергает оба тезиса: журналистская непосредственность и философская проницательность помогают ей научиться видеть смысл формул, почти не обращая внимания на сами формулы, благодаря этому она добивается признания лучших физиков планеты и разговаривает с ними на равных.






– Этот Эйнштейн был какой-то дьявольский гений, да? – спросила я.

– Изгиб бумаги, то есть пространства-времени, называется диффеоморфным преобразованием, – сказал отец. – Мы должны уметь искривлять пространство-время, чтобы каждый видел одну и ту же реальность. В нашем четырехмерном пространстве-времени мы видим кривизну как гравитацию.

Общая теория относительности говорит, как склеить обратно реальность, разбитую различными точками зрения. Мы можем находить соответствие между наблюдениями, сделанными в инерциальных и ускоренных системах координат. Для этого нам просто нужна сила тяжести. Инерциальная система отсчета в гравитационном поле эквивалентна ускоренной системе без гравитационного поля. Это означает, что в самом ускорении нет ничего принципиально нового и что все наблюдатели, независимо от состояния их движения, равноправны. Вселенная выглядит по-разному в зависимости от той или иной точки зрения, но в конечном итоге есть только одна окончательная реальность.


Квантовая теория оказалась посложнее. Все книги по физике, которые я прочитала, предупреждали, чтобы я не впадала в уныние, когда мой мозг плавится в попытках понять ее. Если квантовая теория покажется сумасбродной, предупреждали они, не надо волноваться. Она таковой и является. Как бы подкрепляя сказанное, те же книги цитировали некоторых гениальных физиков, которые признавались, что никто не понимает квантовой физики, и если этого было недостаточно, чтобы утешить читателя, они в качестве неоспоримого аргумента приводили некоторые возражения Эйнштейна.

Но мне не очень нравится, когда тебя гладят по головке и говорят: не волнуйся, если ничего не понимаешь. Квантовая теория – это такая мистерия? Или это и в самом деле наука?

После прочтения большого количества так называемых объяснений теории мне стало ясно, что все мои надежды на понимание квантовой механики держались на одном-единственном эксперименте: с прохождением света через двойную щель. Он состоит в следующем.

Физики направляют луч лазера на экран с двумя параллельными щелями. Свет проходит через щели и попадает на фотопластинку, расположенную за экраном. Если свет состоит из частиц – а Эйнштейн уже доказал, что это так, – следовало бы ожидать два пятна света напротив каждой щели. Но вместо этого вы увидите череду светлых и темных вертикальных полос, похожих на штрих-код.

Физики поняли, что могут объяснить появление штрих-кода, предположив, что свет – это волна, которая дробится на две части при прохождении через щели и затем восстанавливается при сложении этих двух частей за экраном. Когда части волны складываются, они не обязательно попадают в фазу. В местах, где эти две волны находятся в фазе, они усиливают друг друга, давая яркую полоску света, регистрируемую пластинкой. В местах, где они находятся в противофазе, они взаимно уничтожаются, и остаются только темные полоски.

Ну, хорошо, все это кажется немного странным, но это ерунда по сравнению с тем, что происходит дальше. Физики повторяют эксперимент, уменьшив интенсивность лазера до уровня одного фотона в импульсе света, производимого лазером. После каждого такого импульса на фотопластинке за экраном, как и ожидается, появляется новая точка. Так продолжается до тех пор, пока на фотопластинке не прорисуется изображение, состоящее из множества точек. Оказывается, проходя через щели в экране, импульсы лазера медленно, но верно создают ту же интерференционную картину, состоящую из светлых и темных полос.

На основе этого опыта во всех книгах делается вывод о том, что свет ведет себя и как частица, и как волна – это так называемый корпускулярно-волновой дуализм; но при измерениях свет – всегда частица. Единичный фотон неизменно будет зарегистрирован в одной конкретной точке. Только когда вы попытаетесь построить распределение этих точек на поверхности, вы обнаружите, что свет – это волна.

Волна, которая описывает квантовую частицу, – это математическая волна, волновая функция. Если физические волны переносят энергию, то математические волновые функции переносят вероятность. Квадрат амплитуды волновой функции в любой точке пространства определяет вероятность нахождения в этой точке частицы. Если сделать достаточно много измерений положений точек света в пространстве, то получится карта распределения вероятности.

Насколько я могу судить, то, что распределение вероятности для одной частицы можно представить в виде волны, не так уж и странно. Странно то, что интерференционная картина возникает даже в том случае, когда фотоны летят поодиночке. Распределение вероятности, изображаемое чередованием светлых и темных полос, не закодировано в волновой функции единичного фотона – такое распределение получается в результате сложения двух волновых функций. Можно подумать, что один фотон проходит одновременно через обе щели и его волновая функция делится на две. Складываясь за экраном, они интерферируют друг с другом, и в результате получается новая волновая функция. В этом случае отдельные фотоны будут распределены в соответствии с новой волновой функцией, отчего и возникают чередующиеся светлые и темные полосы.

Если закрыть вторую щель и повторить эксперимент с однофотонными импульсами света, то интерференционная картина исчезает. Распределение интенсивности светового пятна на фотопластинке будет соответствовать волновой функции единичного фотона. Интерференционные полосы появляются только в случае, когда обе щели открыты.

Наконец, книги повествуют еще об одном варианте того же эксперимента, который физики проводят в попытке понять, каким образом фотон проходит через обе щели сразу. Они оставляют обе щели открытыми, но на этот раз снабжают их детекторами, которые срабатывают, определяя, через какую из щелей проходит фотон. Затем лазер снова включают в однофотонном режиме и направляют луч на экран с двумя щелями, которые до этого давали интерференционную картину. Но на этот раз на фотопластинке появляются два пятна, соответствующих волновой функции единичного фотона. Как если бы фотон знал, что это за ним следят.

«Ладно, – подумала я. – Это было то, о чем меня предупреждали: запах вскипающих мозгов. Он действительно знает, когда за ним следят?»

Нет, конечно: фотон не знает ничего. Но как вы объясните то, что происходит? Действительно ли фотон может находиться в двух местах одновременно, когда никто на него не смотрит, и в одном, если кто-то следит за ним? Что значит – наблюдать за фотоном? И почему наши наблюдения так влияют на исход эксперимента?

«Эксперимент с двойной щелью, в сухом остатке, – записала я в своем блокноте. – Почему распределения вероятностей одиночных фотонов дают интерференционную картину, как если бы фотон проходил оба пути одновременно? И почему интерференционная картина исчезает при попытке измерить, какой из двух путей выбирает фотон?»

Различные физики видели эту ситуацию по-разному. Фейнман, например, говорил, что когда мы не наблюдаем за частицами, они действительно проходят по двум траекториям одновременно. Бор, в свою очередь, утверждал, что если мы не производим наблюдение, у нас нет права говорить что-либо о частице. До тех пор, пока мы не проводим измерение, говорил Бор, у частицы нет определенного положения в пространстве. До тех пор, пока мы ее не измерили, она даже не частица. Она еще не стала чем-то вообще. Но если частицы не становятся чем-то до тех пор, пока их не измерят, что именно интерферирует, образуя интерференционный узор? Полосы нереализованных альтернатив? Нагромождение событий, которые могли бы случиться, да никогда в полной мере и не произошли?

Нет сомнений, что-то случается в тот момент, когда мы выполняем измерения: стоит выяснить, какой путь выбирает фотон, и интерференционная картина исчезает. Но квантовая теория сама по себе не описывает ничего подобного. Она не говорит ни слова об измерениях вообще. Согласно теории, все описывается с помощью волновых функций: фотон, щели, детекторы, фотографические пластинки и даже физик, проводящий эксперимент. Согласно теории, когда фотон проходит через детектор, его волновая функция накладывается на волновую функцию детектора. Система «фотон плюс детектор» описывается новой комбинированной волновой функцией, описывающей одновременно два состояния – «да, фотон прошел через эту щель» и «нет, фотон не проходил через эту щель». Согласно теории, когда физик проверяет показания детектора, его волновая функция накладывается на комбинированную волновую функцию фотона плюс детектор, образуя нагромождение вероятностей событий: «физик видит, что детектор А зарегистрировал фотон» и «физик видит, что детектор А не зарегистрировал фотон».

Вселенная, согласно квантовой теории, – это просто нагромождение суперпозиций. Иногда мы наблюдаем это в странном чередовании полос. Но мне никогда не приходилось оказываться и на Манхэттене и в Бруклине одновременно или повесить одно пальто сразу на несколько вешалок. Если мир действительно такой квантовый, где все эти одновременно живые и мертвые кошки?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "На лужайке Эйнштейна. Что такое ничто, и где начинается всё"

Книги похожие на "На лужайке Эйнштейна. Что такое ничто, и где начинается всё" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Аманда Гефтер

Аманда Гефтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Аманда Гефтер - На лужайке Эйнштейна. Что такое ничто, и где начинается всё"

Отзывы читателей о книге "На лужайке Эйнштейна. Что такое ничто, и где начинается всё", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.