» » » » Леонид Марченко - Технология мягких лекарственных форм. Учебное пособие


Авторские права

Леонид Марченко - Технология мягких лекарственных форм. Учебное пособие

Здесь можно купить и скачать "Леонид Марченко - Технология мягких лекарственных форм. Учебное пособие" в формате fb2, epub, txt, doc, pdf. Жанр: Медицина, издательство ЛитагентСпецЛитd5a9e1b1-0065-11e5-a17c-0025905a0812, год 2004. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Леонид Марченко - Технология мягких лекарственных форм. Учебное пособие
Рейтинг:
Название:
Технология мягких лекарственных форм. Учебное пособие
Издательство:
неизвестно
Жанр:
Год:
2004
ISBN:
5-299-00271-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Технология мягких лекарственных форм. Учебное пособие"

Описание и краткое содержание "Технология мягких лекарственных форм. Учебное пособие" читать бесплатно онлайн.



Общая часть пособия посвящена характеристике вспомогательных веществ (основам и эмульгаторам), используемым в технологии мазей и суппозиториев. Приведены примеры расчета вспомогательных веществ, особенности технологии различных типов мазей и суппозиториев. Пособие включает 12 приложений, содержащих справочные данные о свойствах лекарственных веществ и компонентов основ, их совместимости, официнальные и унифицированные прописи лекарственных и гомеопатических мазей и суппозиториев. Пособие предназначено для слушателей ФДПО, студентов фармацевтических вузов, колледжей и училищ, а также для практических работников аптек, занимающихся изготовлением мягких лекарственных форм.






Натрий-КМЦ растворяется в холодной и горячей воде с образованием растворов с большой вязкостью. В водных растворах является полиэлектролитом. Устойчива при нагревании и стерилизации. Взаимодействует с солями азотистых оснований, кислореагирующими соединениями, солями металлов с образованием труднорастворимых осадков.

При изготовлении гелей натрий-КМЦ порошок предварительно заливают половинным объемом холодной воды, через 60 мин добавляют остальную воду и нагревают до 50 – 70 °C (до полного растворения).

Пример основы с натрий-КМЦ:

Натрий-КМЦ 6,0;

Глицерина 10,0;

Воды очищенной 84,0.

В концентрации 2 % натрий-КМЦ входит в состав фурацилиновой пасты, рекомендована для мази с пиромекаином.

Пример. Мазь с пиромекаином:

Пиромекаина 5,0;

Метилурацила 5,0;

Натрий-КМЦ 3,6;

Глицерина 9,0;

Воды очищенной до 100,0.

Крахмал (Amylum) входит в состав крахмально-глицериновой основы (глицериновой мази Unguentum glycerini).

Пример глицериновой мази:

Крахмала 7,0;

Воды очищенной холодной 7,0;

Глицерина 93,0.

Получают 100 г основы. Основа представляет собой прозрачную однородную вязкую легко распределяющуюся по поверхности массу. Устойчива к микроорганизмам, может быть использована в качестве основы для глазных мазей.

Недостатком основы является способность при механическом воздействии подвергаться синерезису, долго не хранится.

Мазь глицериновая исключена из госреестра в 1984 г., поэтому мази на крахмально-глицериновом геле могут быть изготовлены только в качестве экстемпоральной рецептуры.

Гели полисахаридов микробного происхождения. Учеными СПХФА предложены полисахариды: аубазидан, родэксман, лауран, способные в концентрациях 0,3 – 2,0 % образовывать гели.

Пример основы:

Аубазидана 1,0 – 1,7;

Глицерина 10,0;

Воды очищенной до 100,0;

Мазевые основы природных белков. Желатиновые глицерогели (1 – 3 % желатина, 1 – 30 % глицерина, 70 – 80 % воды) применяются для изготовления защитных мазей, застывающих на коже в виде прозрачной упругой пленки (паста Унна, ХИОТ-5, ХИОТ-6). Кожные клеи наносят на руки в разогретом виде кисточкой перед началом работы. Хорошо удаляются смыванием водой. Свойства глицерогелей зависят от количества желатина.

Гели неустойчивы к микробной порче, синерезису и высыханию. Желатиновые гели в концентрации до 3 % представляют собой нежные, легкоплавкие студни, разжижающиеся при втирании в кожу, медленно всасываются. Широко применяются при изготовлении различных кремов.

Коллаген (Collagenum) является белком соединительной ткани. Его получают из кожи крупного рогатого скота. Полностью абсорбируется и утилизируется при введении в организм, стимулирует процессы регенерации поврежденных тканей, обладает большой сорбционной способностью, слабой антигенностью. У него отсутствуют токсические и канцерогенные свойства.

В воде набухает с образованием гелей. Коллаген способен к солюбилизации лекарственных веществ, имеющих в своем составе аминокарбоксильные группы. Используют 2 %-е и 3 %-е (для глазных мазей) гели для лечения раневого процесса.

ПОЛИЭТИЛЕНОКСИДНЫЕ ОСНОВЫ

Мазевые основы синтетических ВМС. Полиэтиленоксиды (ПЭО) (Polyaethylenoxydum) получают полимеризацией этилена оксида или поликонденсацией этиленгликоля:



или



Полиэтиленоксиды выпускаются с молекулярной массой от 400 до 4000, имеют консистенцию от жидкой до твердой.

ПЭО без запаха и вкуса, хорошо смешиваются с водой, глицерином, органическими растворителями, нерастворимы в эфире, маслах.

ПЭО совместимы с большинством лекарственных веществ, несовместимы с фенолами, тяжелыми металлами, танином. При сочетании с лекарственными веществами, содержащими окси- и карбоксильные группы возможно протекание взаимодействия по водородным связям с образованием высокоструктурированных систем ПЭО, потерей терапевтической активности.

В качестве основ для мазей используют как сплавы твердых и жидких ПЭО (марок 400, 1500, 4000), так и композиции ПЭО различной молекулярной массы с глицерином и другими вспомогательными веществами. Являются наиболее широко используемой основой для промышленных мазей.

ПЭО-основы нейтральны, гигроскопичны, физиологически индифферентны, при длительном применении не мацерируют кожу, легко высвобождают лекарственные вещества, не являются средой для развития микрофлоры. Хорошо растворяют гидрофильные вещества. Не подвергаются воздействию электролитов, спирта. Имеют слабые бактерицидные свойства (в присутствии ПЭО повышается антимикробная активность антибиотиков, сульфаниламидов, антисептиков), осмотически активны (обладают выраженным дегидратирующим действием). Не нарушают газообмен кожи, мало токсичны, не оказывают раздражающего действиянаткани, легкосмываются, устойчивыкдействиюсвета, влаги. Входят в фармакопеи большинства стран мира.

Для ректальных мазей рекомендована основа состава:

ПЭО-400 70,0;

ПЭО-1500 30,0.

Для вагинальных мазей рекомендована основа состава:

ПЭО-400 80,0;

ПЭО-1500 20,0.

ГЕЛИ ПОЛИВИНИЛПИРРОЛИДОНА (ПВП)

ПВП (Polyvinylpyrrolidonum) – бесцветный, прозрачный, аморфный, гигроскопичный порошок, растворимый в воде, глицерине, ПЭО, хлороформе.

Получение поливинилпирролидона приводится ниже:



Смешивается с ланолином, эфирами, амидами, маслом касторовым, производными целлюлозы, силиконами. Образует растворимые комплексы с витаминами, антибиотиками, дубильными веществами, красителями.

Растворы ПВП в концентрации 3 – 20 % используются для изготовления основ. ПВП широко используются также в косметике.

Пример мази для лечения ринофарингита на основе поливинилпирролидона:

Кислоты аскорбиновой 1,0;

Метиленового синего 0,1;

Ментола 0,01;

Масла эвкалиптового 0,01;

Раствора фенилмеркуробората 2 % 0,2 мл;

ПВП 20,0;

Воды очищенной до 100,0.

ГЕЛИ ПОЛИВИНИЛОВОГО СПИРТА (ПВС)

ПВС (Polyvinylpyrrolidonum) – порошок или крупинки белого или слегка желтоватого цвета, нерастворимые в этиловом спирте.

Получение поливинилового спирта приводится ниже.



В воде и глицерине ПВС растворим при нагревании. Водные растворы ПВС высоковязкие.

Приготовление геля ПВС: порошок заливают холодной водой и оставляют на сутки для набухания, затем нагревают до 80 – 90 °C, постоянно перемешивая до полного растворения.

Для изготовления ксероформной, левомицетиновой, камфорной, анестезиновой и других мазей можно применять 15 %-й гель ПВС.

Для изготовления мазей, образующих на коже легко смываемую пленку, в качестве основы используют:

ПВС 9,0;

ПВП 11,0;

Глицерина 9,0;

Спирта этилового 10,0;

Спирта бензилового 2,0;

Пропиленгликоля 3,0;

Динатриевой соли ЭДТА 0,02;

Воды очищенной до 100,0.

ПОЛИМЕРЫ И СОПОЛИМЕРЫ АКРИЛОВОЙ И МЕТАКРИЛОВОЙ КИСЛОТ

Редкосшитые акриловые полимеры (РАП). Полиакриловую (ПАК) и полиметакриловую кислоты (ПМАК) получают методами радикальной или радиационной полимеризации в виде 20 – 40 % водных растворов:



ПАК и ПМАК – твердые вещества белого цвета аморфной структуры. Молекулярная масса находится в пределах от 10 до 100 кД. В водных растворах образуют вязкие растворы со значением рН 3,0, обладают полиэлектролитными свойствами, способны обмениваться ионами. Устойчивы при широком значении рН. Образуют комплексные соединения с аминами, несовместимы с солями тяжелых металлов, солями азотистых оснований. Обладают интерфероногенной активностью. Торговые марки ПАК и ПМАК известны под названиями карбопола, карбомера, эудражита, САКАП, ареспола. Могут быть использованы как основа и в глазных мазях.

Карбопол (Carbopolum, -934, -940, -941) – редкосшитый сополимер акриловой кислоты и полифункциональных сшивающих агентов (например, аллиловый эфир пентаэритрита) (фирма «B. F. Goodrich Chemical Co.»). Фармакопейная статья на карбопол под названием «Карбомер» включена в фармакопеи Британии, Франции, Международную фармакопею.

В России осуществлен оригинальный синтез получения РАП, выпускаемого под торговым названием ареспол (ТУ 2219-005-29053342-97). Представляет собой мелкодисперсный белый порошок, хорошо диспергируется в воде, образуя вязкие дисперсии с низким рН 7,3 – 7,8. Не токсичен, не раздражает кожу, в кишечнике образует гидрогель, поэтому он используется в лекарственных формах пролонгированного действия.

Хороший загуститель воды, спиртов, гликолей. На ране сохраняет гелевую структуру, что обусловлено их высокой загущающей способностью РАП. Их используют для получения пролонгированных глазных капель, суспензий, мазей, суппозиторных основ, в качестве суспендирующего и эмульгирующего агента (в суспензиях серы, крахмала, анестезина, ацетилсалициловой кислоты).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Технология мягких лекарственных форм. Учебное пособие"

Книги похожие на "Технология мягких лекарственных форм. Учебное пособие" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Леонид Марченко

Леонид Марченко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Леонид Марченко - Технология мягких лекарственных форм. Учебное пособие"

Отзывы читателей о книге "Технология мягких лекарственных форм. Учебное пособие", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.