» » » » Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре


Авторские права

Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре

Здесь можно купить и скачать "Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентБИБКОМd634c197-6dc9-11e5-ae5f-00259059d1c2, год 2013. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре
Рейтинг:
Название:
Ксилотрофные базидиомицеты в чистой культуре
Издательство:
неизвестно
Год:
2013
ISBN:
978-5-94338-638-1
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Ксилотрофные базидиомицеты в чистой культуре"

Описание и краткое содержание "Ксилотрофные базидиомицеты в чистой культуре" читать бесплатно онлайн.



Монография содержит сведения об особенностях развития в условиях чистой культуры видов базидиальных макромицетов – ксилотрофов. Обобщена имеющаяся информация относительно статуса чистой культуры, дан обзор коллекций, существующих в России и за рубежом.






Как уже указывалось, доступность того или иного источника азота зависит в основном от химической природы используемого углерода. Использование аммония и некоторых органических источников азота грибами в большой степени зависит от наличия в среде органических кислот. Небольшие количества (0,1 – 0,2 %) дикарбоновых кислот с четырьмя углеродными атомами (например, янтарная, фумаровая) способствуют лучшему усвоению азота. Это, по всей вероятности, связано с тем, что в данном случае легче образуются кетокислоты, которые, как было указано выше, в свою очередь, связывают аммиак. В этом виде значительно упрощается включение аммиака в метаболизм грибов. Определенную роль в развитии организмов и образовании вторичных метаболитов играют также катионы и анионы солей используемых источников азота (Егоров, 1986). Если организм хорошо использует аммонийную форму азота, то для его развития небезразлично, в какой форме этот аммоний вводится в среду. При использовании, например, сернокислого и молочнокислого аммония можно получить различные результаты, несмотря на то, что азот представлен одной и той же формой. При использовании сернокислого аммония среда будет сильно подкисляться в результате накопления ионов серной кислоты. Если же будет использоваться молочнокислый аммоний, то резкого сдвига в значении рН субстрата может не произойти, так как освобождающаяся молочная кислота легко может быть использована организмом в качестве источника углерода. Таким образом, в данном случае роль аниона при одной и той же форме азота будет также различной. Все эти факторы необходимо учитывать при изучении развития микроорганизмов и возможностей образования ими метаболитов.

Для продуцентов антибиотиков указывается, что в зависимости от источника азота и формы, в которой он присутствует в среде, микроорганизм будет в состоянии синтезировать антибиотическое вещество или он будет лишен этой способности (Егоров, 1986). Так, продуцент стрептомицина не образует антибиотика при развитии на средах с нитратами или нитритами в тех случаях, когда они являются единственными источниками азота. Образование стрептомицина происходит на средах с аммонийными источниками азота. Биосинтез пенициллина идет более энергично, если в среде наряду с аммонийным источником азота имеется нитратный источник азота.

Роль особенностей и степени доступности различных источников азота активно изучалась и в отношении высших базидиальных грибов, в том числе, древоразрушающих. Выбор источника азота очень важен для получения хорошего роста мицелия в культуре и высокого содержания в нем протеина (Бухало, 1988). Факт того, что потребность грибов в азоте в значительной мере зависит от снабжения их углеродом, а также от других факторов обсуждается и в отношении базидиомицетов (Маслова, 1969; Биосинтетическая деятельность… 1969; Berry, 1975; Dijkstra, 1976). Высшие базидиомицеты могут использовать как неорганические, так и органические формы азота. Основными источниками неорганического азота являются аммонийные соли и нитраты. По мнению некоторых исследователей (Биосинтетическая деятельность … 1969; Маслова, 1969; Treschow, 1944; Вегту, 1975; Dijkstra, 1976), нитраты не усваиваются или плохо усваиваются многими высшими базидиомицетами. Имеются, однако, сведения, что некоторые виды родов Tricholoma, Coprinus, Collybia, Lentinus хорошо используют нитраты (Маслова, 1969; Бухало и др., 1972; Rawald, 1963).

Органический азот обычно обеспечивает лучший рост мицелия, чем минеральные соли азота (Биосинтетическая деятельность…1969; Маслова, 1969; Dijkstra, 1976). Из органических источников азота для выращивания мицелия съедобных грибов используются мочевина и аминокислоты. Как один из благоприятных источников азота отмечается аспарагин (Berry, 1975). Хорошими источниками азота для высших базидиомицетов являются белки, пептоны, свободные аминокислоты, гидролизат казеина. При исследовании физиологии грибов рода Coprinus (Fries, 1955) показано, что у них существуют видовые и штаммовые различия усвоения разных форм азота. Одни штаммы Coprinus fimetarius способны усваивать нитраты, другие – нитриты. Азотное питание у многих видов высших съедобных базидиомицетов до настоящего времени не изучалось.

В качестве источника азота на синтетической среде с глюкозой А.С. Бухало с сотрудниками испытаны нитратные и аммонийные соли (NaNO3, NH4C1, NH4NO3), а для некоторых видов – также органические соединения азота: аспарагин, мочевина и пептон (Бухало, 1988). Контролем служил рост мицелия на среде с NaNO3. Не все испытанные виды росли на среде с нитратным азотом. Его не усваивают Agaricus bisporus, Lepista nuda, Flammulina velutipes, слабо утилизируют NaNO3 Pleurotus ostreatus, Рanus tigrinus. В то же время, Agaricus hortensis, Armillariella jnellea, Macrolepiota procera, Marasmius scorodonius, Lycoperdon pyriforme и Coprinus micaceus лучше росли на среде с нитратным азотом, чем с аммонийным. На средах с аммонийными источниками азота лучше, чем на среде с нитратным азотом, развивались Schizophyllum commune, Sparassis rispa, Pleurotus ostreatus, Panus tigrinus, P. conchatus, Oudemansiella radicata, Agaricus arvensis, A. silvaticus, Coprinus comatus, Scleroderma citrinus, Suillus variegatus и др. Наилучший рост испытанных штаммов, кроме Macrolepiota procera и Pleurotus ostreatus, отмечен на среде с органическим источником азота – аспарагином. На среде с мочевиной в указанных исследованиях прекрасно развивались культуры Pleurotus ostreatus, Kuehneromytes mutabilis и Agaricus arvensis, но слабо росли Macrolepiota procera, Agaricus bisporus, Flammulina velutipes и др. Установлено, что на среде с NaNO3 и аспарагином большинство испытанных штаммов незначительно изменяют рН среды в кислую сторону. При культивировании на среде с аммонийными соединениями азота, являющимися в данном случае солями сильных кислот, 40-50 % испытанных грибов подкисляют питательную среду до рН 3-4. А.С. Бухало (1988) отмечает, что аммонийные соли являются хорошим источником азота для культивирования высших базидиомицетов. Однако в связи с тем, что на синтетической среде с аммонийными солями происходит закисление питательной среды, культивирование следует проводить, используя аммонийные соли слабых кислот. Проведенные исследования, безусловно, имеют огромное теоретическое и прикладное значение, однако в анализе полученных данных авторами практически не уделяется внимания взаимосвязи между особенностями ассимиляции азота и трофической принадлежностью вида. Однако, на наш взгляд, это перспективная сфера исследований, которая приобретает особое значение в применении к биотехнологически ценным культурам, поскольку от источника азота могут зависеть не только ростовые, но и продуктивные показатели. Более того, заслуживает внимания такое направление, как возможности регуляции темпов развития, стимуляции или пассивации метаболических процессов модификацией видов источников азота, дробности их внесения в субстрат и т.п. При направленном биосинтезе, например, целлюлолитических ферментов грибом Peniophora gigantea наивысшая биохимическая активность клеток наблюдается на средах с органическим азотом (аспарагин, пептон и др.) (Мосин, 2002).

Питательные резервы мицелия имеют большое значение для последующего плодоношения (Robert, 1977, 1979; Morimoto et al., 1981). При использовании традиционных методов культивирования вегетативная и репродуктивная фазы развития грибов проходят на едином субстрате. В методах японских авторов (Oyama et al., 1974) вегетативная и репродуктивная фазы обеспечиваются оптимальными условиями питания на разных средах. Причем после появления зачатков плодовых тел все используемые соединения азота поступают из мицелия. Плодовые тела таких видов, как Flammulina velutipes, Panus tigrius, Pleurotus ostreatus и других, легко плодоносящих в культуре, образуются на том же субстрате, на котором сохраняется в лаборатории культура гриба.

В качестве питательных субстратов для получения плодовых тел в лабораторных исследованиях используют пористые материалы, например, смоченные разбавленным пивным суслом или минеральной средой древесные опилки и древесную муку, мелко нарезанные веточки и хвою, высушенный ржаной хлеб с водой, кашицу из хлебных крошек, размягченную в 40 %-ном растворе лимонной кислоты. Многие исследователи занимались разработкой питательных сред для получения плодоношений отдельных видов высших базидиомицетов: Flammulina velutipes Lentinus edodes, Panus tigrinus, Pleurotus ostreatus и др. (Plunkett, 1953; Leatham, 1983). Однако трудно судить, оптимальны ли предложенные среды, так как отсутствуют качественные и количественные данные о продуктивности плодоношения грибов на этих средах.

Плодоношение можно получить как на твердых, так и на жидких средах в поверхностной культуре, но на жидкой среде плодовые тела обычно появляются позднее (Бухало, 1988).

Состав питательной среды является одним из определяющих факторов, влияющих на плодоношение высших базидиомицетов в условиях чистой культуры (Бухало, 1988). Изучение влияния компонентов питательной среды на плодоношение, проведенное на синтетических средах рядом исследователей, позволило сделать определенные выводы, суммированные Ф. Орриер (Horriere, 1979). Для получения плодоношения в чистой культуре питательные среды должны соответствовать определенным требованиям. Источник углерода в наиболее часто используемых для плодоношения средах вносится в виде углеводов (глюкозы, мальтозы, сахарозы, спирта). У некоторых видов, особенно древоразрушающих грибов, добавление в питательную среду фильтровальной бумаги или соломы стимулирует плодоношение. Азот в такие среды вносится в органической (в виде аланина, аспарагина, других аминокислот) или минеральной форме. В последнем случае предпочтение отдается аммонийным солям.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Ксилотрофные базидиомицеты в чистой культуре"

Книги похожие на "Ксилотрофные базидиомицеты в чистой культуре" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Галина Ильина

Галина Ильина - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре"

Отзывы читателей о книге "Ксилотрофные базидиомицеты в чистой культуре", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.