» » » Виталий Егоров (Zelenyikot) - Делай космос!


Авторские права

Виталий Егоров (Zelenyikot) - Делай космос!

Здесь можно купить и скачать "Виталий Егоров (Zelenyikot) - Делай космос!" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство ЛитагентАСТc9a05514-1ce6-11e2-86b3-b737ee03444a, год 2018. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Виталий Егоров (Zelenyikot) - Делай космос!
Рейтинг:
Название:
Делай космос!
Издательство:
неизвестно
Жанр:
Год:
2018
ISBN:
978-5-17-109423-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Делай космос!"

Описание и краткое содержание "Делай космос!" читать бесплатно онлайн.



Покорители далеких планет часто становятся героями книг или фантастических фильмов. Они пересекают пояса астероидов, проносятся мимо живописных планет-гигантов, поднимаются на склоны инопланетных гор и любуются внеземными закатами… Будущее наступило, но не такое, как мы хотели. Теперь изучают и открывают космос настоящие покорители – роботы. Вместе с ними люди, не покидая Земли, пересекают миллионы километров пустоты, преодолевают трудности, находят решение в безвыходной ситуации и открывают нам загадки космоса. Предлагаем отправиться в путешествие с настоящими покорителями космоса: межпланетными зондами, луноходами и марсоходами.

Нашим проводником станет популяризатор и энтузиаст космонавтики Виталий Егоров (блогер Zelenyikot) – основатель сообщества в соцсетях «Curiosity-марсоход», администратор и редактор сообщества «Открытый космос», человек, нашедший на поверхности Марса советский спускаемый аппарат «Марс-3».






Космические частицы, врезающиеся в грунт безатмосферных тел, выбивают не только фотоны, но и более крупные элементарные частицы, в том числе нейтроны. Выбитые нейтроны движутся через грунт с высокой скоростью и при столкновениях с каждым атомом водорода теряют много энергии. Соответственно, измеряя энергию вылетающих с поверхности нейтронов можно определить, находится ли под ней водород.



Водород – очень летучий газ, который не задерживается в грунте в свободной форме, особенно там, где атмосферное давление стремится к нулю. Чтобы сохранить водород в грунте, его нужно связать на химическом уровне, и лучшим средством для этого остается вода. Таким образом, пролетая над поверхностью и собирая данные о скоростях вылетающих нейтронов, можно определить примерное содержание воды в грунте. Разумеется, чем ниже мы пролетим, тем точнее будут данные.


Нейтронные спектрометры на орбитальных аппаратах пока дают погрешность в сотню километров. Если использовать специальный ограничитель, называемый «коллиматор», то можно повысить точность до десятков километров. Еще для этого метода ограничена глубина зондирования. Все нейтроны вылетают с глубины не ниже 1 метра, поэтому о запасах воды в более глубоких слоях остается только догадываться и полагаться на другие методы исследования.



С помощью российских нейтронных детекторов LEND и HEND, были получены данные о распределении водорода/воды в приповерхностных слоях Луны и Марса. И если марсианские данные уже дважды подтвердились, то лунные еще ждут своей проверки.


На Марсе в приполярный регион высадился посадочный модуль Phoenix, и там, где HEND прогнозировал до 70 % воды в грунте, прямо под пылью нашелся пласт водяного льда. В кратере Гейла, где работает марсоход Curiosity, HEND обещал 5 %, а по данным марсохода содержание воды в грунте колеблется от 3 % до 5 %, и лишь изредка попадаются «оазисы» аж в 6 %.


После такого успеха HEND его российского «брата» DAN «усадили» прямо на марсоход, и он теперь собирает данные не с высоты 300 километров, как предшественник, а гораздо ниже – с полуметра. Правда, глубина зондирования по-прежнему не превышает одного метра, зато пространственное разрешение увеличилось с десятков километров до сантиметров.


Впрочем, несмотря на успехи нейтронных детекторов, окончательного доверия к ним еще нет. Ледники на Луне ждут своего первооткрывателя, а космические агентства, как и частные компании, все больше внимания обращают на ее полюса. Хотя концентрация влаги на Луне, по данным спутников, не превышает 4 %.

Радиолокация

Зондирование планет в радиодиапазоне начали проводить еще с Земли. Много информации смог собрать известный радиотелескоп Аресибо в Пуэрто-Рико, чья параболическая антенна диаметром в 300 метров появлялась во множестве голливудских фильмов. Еще в 80-е годы он обнаружил на полюсах горячего Меркурия странный отблеск, источником которого мог стать водяной лед. Ученые долго не могли поверить в то, что на самой близкой к Солнцу планете могут существовать ледники. Пришлось ждать результатов зонда Messenger, который при помощи нейтронного детектора и лазерной локации смог подтвердить факт наличия льда на полюсах Меркурия.



Впечатляющие картины показал радиотелескоп Аресибо во время суперлуния 2013 г. На Луне с его помощью удалось разглядеть последствия катастрофических лавовых потоков и «наводнений». Если совместить эти снимки с картами распределения минералов, полученных с орбитальных спектрометров, то можно составить подробную геологическую карту местности и, возможно, реконструировать эволюцию поверхности Луны. К ней неоднократно отправляли радары на спутниках, но их энергии было недостаточно, чтобы проникнуть глубоко в грунт.


Радиоволны позволяют не только заглядывать под поверхность планет и спутников, но и показывают высокую эффективность на облачных планетах. Три радара летало к Венере. «Венера-15» и «Венера-16» провели картографирование северного полюса в 80-е годы, а потом, в 90-е, Magellan составил почти полную его карту.



Аппарат Cassini на орбите Сатурна использовал свой радарный инструмент, чтобы проникнуть сквозь плотную атмосферу его спутника Титана. В ходе многочисленных пролетов космическая станция Cassini постепенно приоткрывала вечную пелену атмосферы и открывала науке этот поистине удивительный мир, в чем-то невероятно похожий на земной, а в чем-то разительно от него отличающийся. Многократная радарная съемка позволила не просто картографировать Титан, но и наблюдать динамические процессы на нем. Так, таинственно появившийся, а потом исчезнувший остров, сочли признаком происходящих сезонных изменений на самом крупном спутнике Сатурна. Возможно, это был ледяной айсберг, обрушившийся в метановое море.


Другие диапазоны радиоволн и другая конструкция радара позволяют забираться гораздо глубже. На орбите Марса работают два космических аппарата, оборудованные радарами, чьи волны проникают в кору планеты на 1–3 километра.



Исследование европейского космического аппарата Mars Express позволило получить информацию о мощности и структуре полярных льдов и оценить запасы воды на полюсах Марса. Его же сканирование позволило обнаружить древние астероидные кратеры, погребенные под сотнями метров вулканической лавы и осадочными накоплениями марсианского океана в северном полушарии планеты. Ранее ученые неоднократно отмечали видимую разницу в количестве метеоритных кратеров в южном и северном полушариях Марса, и Mars Express позволил разгадать эту загадку. А если бы на «Красной планете» существовали марсиане, зарывшиеся от вакуума, засухи и мороза в подмарсианский город-убежище, то Mars Express нашел бы его.


Радар привезли даже на поверхность Луны. Китайский луноход Yutu («Нефритовый заяц») успел пройти всего сотню метров, но даже во время такого короткого пути ему удалось получить интереснейшие профили лунной поверхности на глубину около четырехсот метров. В будущем такая информация будет жизненно необходима для строительства лунной станции, базы или поселения.

Альфа-лучевая и рентгенофлоуресцентная спектроскопия

Когда дело доходит до исследования космических тел посадочными аппаратами, практически невозможно обойтись без трогательных – в прямом смысле – моментов альфа-лучевой рентгенофлоуресцентной спектроскопии.



Приборы типа APXS (Alpha Particle X-Ray Spectrometer) устанавливались на все марсоходы NASA. APXS имеется на посадочном аппарате Philae на ядре кометы 67P/Чурюмова-Герасименко. На советских луноходах был установлен похожий прибор – РИФМА. Принцип работы метода напоминает гамма-спектроскопию, за тем исключением, что датчик имеет свой собственный источник заряженных частиц (какой-нибудь радиоактивный материал), прежде всего альфа-лучей. Заряженными частицами бомбардируется исследуемый образец, в ходе процессов поглощения альфа-частиц ядрами атомов выделяется рентгеновское излучение. Для каждого химического элемента спектр излучения будет свой, что позволяет определять химический состав образца.


Это далеко не исчерпывающий обзор оборудования для исследования Солнечной системы. Как правило, на межпланетные аппараты ставятся и астрофизические приборы для регистрации энергичных частиц, межпланетной радиации, плазмы и пыли. Межпланетные перелеты позволяют изучать еще и космическое пространство, взаимосвязи Солнца, планет и межзвездной среды, но это уже другая история.


1.5. Кто, как и зачем обрабатывает снимки из космоса

Фотографии из космоса, публикуемые на сайте NASA и других космических агентств, иногда вызывают сомнения в подлинности – внимательные энтузиасты находят на изображениях следы редактирования, ретуширования или манипуляций с цветом. Так повелось еще со времен зарождения «лунного заговора», а теперь под подозрение попали снимки, сделанные не только американцами, но и европейцами, японцами, индийцами. Разберемся, зачем вообще обрабатывают космические изображения и могут ли они, несмотря на это, считаться подлинными.



Для того чтобы правильно оценивать качество космических снимков, которые мы находим в Сети, необходимо учитывать два важных фактора. Один из них связан с характером взаимодействия космических агентств и широкой публики, другой продиктован физическими законами.

Физика цифровой фотографии

Как правило, тот, кто упрекает космические агентства за манипуляции с цветом, использование фильтров или публикацию черно-белых фотографий «в наш век прогресса цифровых технологий», не учитывает физических процессов получения цифровых изображений. Как мы уже знаем, обычные земные фотоаппараты снимают точно так же, как профессиональные телескопы – через цветные фильтры, только они не показывают нам промежуточные этапы подготовки снимков.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Делай космос!"

Книги похожие на "Делай космос!" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Виталий Егоров (Zelenyikot)

Виталий Егоров (Zelenyikot) - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Виталий Егоров (Zelenyikot) - Делай космос!"

Отзывы читателей о книге "Делай космос!", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.