» » » » Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность


Авторские права

Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность

Здесь можно купить и скачать "Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент 5 редакция «БОМБОРА», год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность
Рейтинг:
Название:
Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность
Автор:
Издательство:
неизвестно
Год:
2019
ISBN:
978-5-04-093386-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность"

Описание и краткое содержание "Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность" читать бесплатно онлайн.



Перед вами история невероятной дружбы между двумя великими физиками, изменившими понятия времени и истории, Ричардом Фейнманом и Джоном Уилером. Несмотря на различия этих двух личностей, их дружба выдержала испытания временем и способствовала чрезвычайно успешному сотрудничеству, приведшему в итоге к полному переосмыслению природы времени и реальности.





Вообразите два взаимодействующих электрона как пару высоких кресел-качалок, соединенных бельевой веревкой, которая символизирует линию светового конуса. Поскольку световой конус – чисто математическое понятие, представляющее временные задержки и пространственные дистанции, связанные со скоростью света, мы используем нечто более осязаемое, чтобы изобразить его.

Веревка просто показывает, как связаны причина и следствие.

Покачаем одно кресло вперед-назад, и сигнал посредством веревки на мгновение позже достигнет другого кресла, заставив его тоже качнуться. Рассматривая электроны, стоит учитывать, что в их случае сигнал передается со скоростью света.

И хотя теория электромагнетизма Максвелла ни в чем не ошибается, нашей аналогии недостает важного ингредиента: электромагнитных волн, или, говоря на квантовом языке, фотонов. Нить светового конуса символизирует задержку, но она автоматически не включает электромагнитную трансляцию, которая следует по линии сигнала. Логика говорит нам, что если два события разделены таким образом, что электромагнитные волны могут путешествовать между ними, это вовсе не означает, что волны будут это делать.

И тем не менее, следуя стандартным предписаниям Максвелла – принятым как тогда, так и сейчас подавляющим большинством физиков, – Дирак включил в схему электромагнитные волны как средство взаимодействия электронов. Как еще могут они «говорить» друг с другом, как один «сообщает» другому, что делать?

Дирак охарактеризовал волны – пульсирующие электромагнитные поля – как набор синусоидальных колебаний, в сущности струн, различных частот (скорость вибрации). Почему струны? Как простейшее отображение чего-либо колеблющегося их легко представить. Квантовая механика предсказывает, что их энергия пропорциональна частоте.

К собственному разочарованию, Дирак нашел бесконечное количество возможных типов колебаний (технически именуемых «степенями свободы»), что вело к расходящейся сумме для энергетических вкладов. Следовательно, рассчитанная суммарная энергия выходила бесконечной, что невозможно с физической точки зрения.

Получить реалистичный ответ Дирак мог, лишь произвольно ограничив сумму.

В нашей веревочной аналогии не очень удобно использовать струны, поэтому давайте вообразим набор простыней, хлопающих в разных ритмах. Мы вешаем простыни по одной, и каждая вибрирует особенным образом. Вскоре мы обнаруживаем, что у нас есть безмерное число возможностей, веревка выдержит очень много простыней. Однако мы хотим постичь явление целиком, изучить все виды колебаний, и мы торопливо добавляем новые и новые простыни, пока не падаем от усталости.

Веревка покрывается все более и более толстым слоем ткани, и процесс не останавливается!

Прочтя выкладки Дирака, Фейнман начал думать, что нити светового конуса будет достаточно самой по себе. Что если нет никаких электромагнитных волн, просто прямая причинная связь между двумя электронами?

Результатом будет отсроченное действие на расстоянии.

Классическое действие на расстоянии Ньютона не имело временной задержки, а новые теории, такие как общая теория относительности, позволили включить этот параметр в рассмотрение. Тогда электроны будут взаимодействовать на расстоянии с временной задержкой, определяемой световым конусом. Это обеспечило бы соответствие между причиной и следствием, чтобы они передавались с правильной скоростью – скоростью света – даже если в самом деле между электронами ничего не перемещалось.

Оставив в стороне поля, отважно думал Фейнман, может быть, удастся выйти из ловушки бесконечного суммирования, а прямое взаимодействие между электронами сведется к сигналу. Просто потрясите один электрон, и другой затрясется в свой срок, подобно креслам-качалкам, соединенным бельевой веревкой безо всякой ноши из простыней.

Попытка оживить действие на расстоянии – после Максвелла, Эйнштейна и других, доказавших, что оно невозможно – может выглядеть безрассудством. Попытка избавиться от посредника, а именно, полей, который переносит силу из одного места в другое, может выглядеть нелогичной. Но это было время невероятной революции в науке. Громадное количество аспектов субатомной физики казались странными поначалу, например, электроны, внезапно перепрыгивающие с одного атомного уровня на другой.

Фейнман все равно верил, что действие на расстоянии с введением временной задержки стоит того, чтобы его рассматривать – особенно учитывая альтернативу, где приходится возиться с бесконечными величинами. Может быть, в квантовом мире – для крошечных дистанций, недоступных наблюдению – законы Максвелла требуют поправки. Веря только тому, что он мог доказать сам, Фейнман обладал достаточно открытым умом, чтобы проверять самые радикальные гипотезы и отставить в сторону классическую теорию электромагнетизма.

Другой хорошо известный факт из области электродинамики тоже подвигнул Ричарда на то, чтобы забыть про поля. В расчетах, включающих либо классическую, либо квантовую электродинамику (как было известно в то время), электрон, по всей видимости, имел бесконечную собственную энергию. Собственная энергия – это объем энергии, необходимый, чтобы создать частицу или ее конфигурацию с нуля, что-то вроде перечня ресурсов, требующихся для постройки здания, включая материалы и труд.

По стандартному определению, собственная энергия включала энергию покоя частицы (связанную с ее массой посредством знаменитой формулы Эйнштейна), а также энергию ее взаимодействия с собственным электромагнитным полем. Для частицы конечного размера расчет этой величины возможен, поскольку сила поля уменьшается по мере увеличения расстояния от его центра. Можно определить, сколько энергии нужно, чтобы возник шарик с определенным зарядом, учитывая силы, производимые этим шариком самим по себе посредством полей, которые он создает.

Тем не менее если принять, что электрон обладает параметрами точки, то есть он бесконечно мал, его поле в этой самой точке должно быть бесконечно сильным. Следовательно, сила взаимодействия между электроном и его собственным полем будет тоже бесконечно большой.

Выходит, что расчет собственной энергии электрона приносит нам бесконечную величину и это откровенно нереальный физический результат.

Простое средство справиться с этим, по мнению Фейнмана, состояло в том, чтобы запретить электрону взаимодействовать с его собственными полями. Поля надо убрать. Электроны будут взаимодействовать друг с другом и никоим образом сами с собой. Отсюда величина их собственной энергии легко определима, исходя из их массы, с помощью того же уравнения Эйнштейна.

Она будет конечной и осмысленной.

Лицом к лицу с сопротивлением

Когда Фейнман уже работал вместе с Уилером в Принстоне, он открыл главную проблему, возникающую при попытке убрать поля из рассмотрения при построении гипотезы действия на расстоянии. Хорошо известный феномен, именуемый радиационным сопротивлением, демонстрировал, что электроны и другие заряженные частицы куда сложнее ускорить, чем лишенные заряда.

Ускорить протон, например, намного тяжелее, чем нейтрон, хотя их массы сравнимы.

Логическое объяснение состояло в том, что заряженные частицы генерируют излучение в форме электромагнитного поля, которое влияет на них самих и замедляет их движение. Если вспомнить нашу аналогию с креслами и веревкой, это были бы простыни, повешенные на кресло и замедляющие его качание. Нейтральные объекты не обременены таким «довеском» и поэтому сравнительно более мобильны.

Но опять же, нужны ли поля и взаимодействие между ними, думал Фейнман, чтобы описать процесс радиационного сопротивления? Или может быть совсем иной способ?

Когда в их совместной с Уилером работе в области рассеяния наступила пауза, Ричард решил взяться за мучающее его затруднение и в конечном итоге отыскать ответ. Результатом стало вполне удобоваримое объяснение: предположим, что радиационное сопротивление было прямым воздействием на электрон со стороны всех других заряженных частиц в пространстве, а вовсе не электромагнитного поля.

Потряси электрон, и все другие заряженные частицы прореагируют, отправляя сигналы обратно к источнику, и они неким образом доберутся до него безо всякого поля. Комплекс реакций со стороны других заряженных частиц произведет воздействие на исходный электрон, и именно оно помешает тому ускоряться.

Оживляя нашу аналогию, мы должны прикрепить кресло к бесконечному числу других множеством веревок. Покачав его, мы вынудим качаться и все остальные, а затем их движение передастся по веревкам обратно и станет тормозить колебания первого.

И никаких висящих на спинке простыней, чтобы объяснить эффект!

Выслушав ученика с большим вниманием, Уилер немедленно указал на несколько слабых мест.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность"

Книги похожие на "Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пол Халперн

Пол Халперн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пол Халперн - Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность"

Отзывы читателей о книге "Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.