» » » » Сергей Рязанский - Можно ли забить гвоздь в космосе и другие вопросы о космонавтике


Авторские права

Сергей Рязанский - Можно ли забить гвоздь в космосе и другие вопросы о космонавтике

Здесь можно купить и скачать "Сергей Рязанский - Можно ли забить гвоздь в космосе и другие вопросы о космонавтике" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент 5 редакция «БОМБОРА», год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Рязанский - Можно ли забить гвоздь в космосе и другие вопросы о космонавтике
Рейтинг:
Название:
Можно ли забить гвоздь в космосе и другие вопросы о космонавтике
Издательство:
неизвестно
Год:
2019
ISBN:
978-5-04-097778-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Можно ли забить гвоздь в космосе и другие вопросы о космонавтике"

Описание и краткое содержание "Можно ли забить гвоздь в космосе и другие вопросы о космонавтике" читать бесплатно онлайн.



«Как попасть в отряд космонавтов?», «Что вы едите на борту космического корабля?», «Есть ли интернет на МКС?», «Плоская ли Земля?» – эти и другие вопросы постоянно задают космонавтам. Космонавт Сергей Рязанский в этой книге отвечает на вопросы, которые интересуют многочисленных любителей космонавтики.





Пилотируемая космонавтика тоже дает коммерческую отдачу, хотя и не напрямую, а опосредованно. Раньше я уже говорил, что если заняться наконец серьезной организацией экспедиции на Марс, то придется решить множество проблем по защите и обеспечению экипажа корабля. Потребуются системы для хранения провизии и воды, для утилизации отходов, инструменты для ремонта и медицины, какие-то новые генераторы энергии и еще многое, многое другое. И всё это должно быть легким, компактным, надежным, высокоэффективным. Когда проблемы решат, появятся изобретения, патенты, готовые линии сборки. И всё пойдет в промышленность, принесет прибыль. Пример в истории уже был. Многие новинки типа «липучек» на одежде, пожарных скафандров, тефлоновых сковородок, микрокомпьютеров, энергосберегающих домов вошли в наш быт благодаря американской лунной программе «Аполлон»; она давно окупилась.

Вероятно, новинки, которые я перечислил, появились бы и без космонавтики, но с ней они вошли в наш быт намного раньше.

Почему мы летаем с Байконура в Казахстане?

Так сложилось исторически. Напомню, что Казахстан еще недавно был частью Советского Союза. Когда наши конструкторы разрабатывали межконтинентальную баллистическую ракету Р-7, им понадобился новый полигон для ее испытаний, в минимальной степени нарушающий жизнь людей. Государственная комиссия рассматривала три варианта. Первый – Марийская Автономная Республика, где после войны остались значительные вырубки леса и были хорошие транспортные пути. Второй – западное побережье Каспийского моря; туда можно было бы доставлять ракетные блоки баржами по Волге. Третий – Казахстан, разъезд Тюра-Там; через него проходила железная дорога Москва – Ташкент. Последний вариант больше всего понравился комиссии, и в 1955 году решение было принято. Никто тогда не мог предположить, конечно, что полигон станет космодромом Байконур, а Казахстан обретет независимость.


Доставка ракеты-носителя «Союз-ФГ» на стартовый комплекс космодрома Байконур в сентябре 2013 года (фотография Андрея Шелепина /ЦПК)


Полигоны Капустин Яр и Плесецк тоже используются для запуска ракет, но преимущество Байконура сегодня в том, что там есть готовая и проверенная инфраструктура для пилотируемых запусков; всё отлажено и работает как часы. И еще – чем космодром южнее, тем больше орбит он охватывает, а Байконур в этом смысле расположен выгоднее других наших площадок.

Где проходит граница между космосом и атмосферой?

Век назад ученые полагали, что граница атмосферы проходит на высоте 12 км. У них были для этого основания. Ведь если рассуждать о нашей атмосфере как газовой смеси, пригодной для дыхания, то она действительно заканчивается в районе 10 км. На этом уровне из-за низкого давления и малого содержания кислорода человек погибнет. Позже исследования на стратостатах и высотных самолетах показали, что атмосфера простирается гораздо дальше.

Сегодня условную границу космоса проводят на высоте 100 км. И связано это не только с красивым «круглым» числом, но еще с тем, что выше перестает действовать подъемная сила воздуха, которая нужна для полета на крыльях. Авиация не может подниматься туда, поэтому там начинается сфера космонавтики.


Структура атмосферы


Однако если смотреть на вопрос практически, то и на высоте 100 км атмосфера не заканчивается. Физики говорят, что переход атмосферы в межпланетное пространство постепенно происходит в экзосфере – области, которая простирается на 190 тысяч километров, половина расстояния до Луны! Получается, что спутники и Международная космическая станция всё еще находятся в атмосфере – в ее высших разреженных слоях. И это правда: любой околоземный объект потихоньку тормозится под воздействием разреженных газов. Раньше или позже он войдет в более плотные слои и сгорит. Чтобы сохранить орбиту Международной космической станции, ее необходимо «корректировать», то есть поднимать высоту с помощью двигателей.

Как устроена ракета?

Даже самая простая ракета состоит как минимум из трех элементов: ракетного двигателя с соплом, топливного бака и полезной нагрузки. Но такая ракета далеко не улетит, если не управлять ее полетом. Значит, нужен еще блок управления, который работает по радиокомандам с Земли или по заложенной программе. Блок должен как-то влиять на траекторию ракеты, не давать ей сбиться с курса. Значит, нужны еще так называемые исполнительные органы: на крылатые ракеты ставят крылья и хвост с воздушными рулями, на баллистические ракеты – газовые рули внутри сопла, на космических применяются поворотные сопла рулевых двигателей.


Устройство ракеты


Второй экипаж Сергея Рязанского и ракета «Союз-ФГ», которая через три дня доставит космонавтов на орбиту (фотография Андрея Шелепина /ЦПК)


Ракетное топливо обычно состоит из горючего и окислителя. Чтобы они случайно не смешались и не воспламенились, их баки отделены друг от друга. Кроме того, важно сделать так, чтобы горючее и окислитель непрерывно шли в двигатель, в камеру сгорания. И чем больше будет давление в этой камере, тем больше будет эффективность двигателя, тем дальше и выше ракета полетит. На первых ракетах с жидким топливом, которые появились еще в 1930-е годы, применяли вытеснительную подачу топлива – из особого бака поступал азот под давлением и вытеснял компоненты топлива, направляя их в камеру сгорания. Но такие двигатели обладали невысокой тягой и эффективностью, то есть не использовали полностью запас энергии, содержащийся в топливе. Сегодня используется турбонасосный агрегат – турбина приводит в действие насосы, которые прокачивают компоненты топлива.

Простая ракета не может вывести значительный груз на орбиту, ведь она тяжелая сама по себе. Поэтому придумали делать многоступенчатые ракеты, то есть соединять две, три, четыре ракеты, которые называются ступенями. Что это дает? Когда топливные баки первой ступени опустошаются, она отбрасывается, и начинает работать двигатель второй, затем – третьей, четвертой. Сразу получается выигрыш: нет нужды тащить на высоту опустевшие баки.

Традиционная схема многоступенчатой ракеты построена на последовательном расположении ступеней – одна над другой. Но долго не могли разработать систему запуска двигателя второй ступени после отделения первой. Поэтому команда Сергея Королёва предложила оригинальную идею: собрать ступени в «пакет», то есть соединить их боками и запускать одновременно на старте. Так появилась ракета Р-7, которая стала первой межконтинентальной; ее называют просто «семеркой». На ее основе потом создавались ракеты для запуска спутников и космонавтов, сейчас так же устроены самые современные ракеты-носители «Союз-У», «Союз-ФГ» и «Союз-2».

«Пакет» ракеты Р-7 собирается из пяти блоков: центрального блока А и четырех боковых блоков Б, В, Г и Д. Двигатели всех блоков запускаются на старте. После опустошения баков боковые блоки отделяются, а центральный блок продолжает полет. Впервые ракета Р-7 стартовала 15 мая 1957 года. За 60 лет было запущено почти 1900 ракет этого семейства, а на них – более 2000 спутников и межпланетных аппаратов. Можно сказать, ракеты линейки Р-7 – это «рабочие лошадки» космонавтики.

Но мысль инженеров не остановилась на достигнутом. Была освоена и схема последовательного расположения ступеней: «семерка» пополнилась третьей ступенью – блоком Е; с его помощью выводились на межпланетные трассы первые исследовательские аппараты, а на орбиту – первые корабли с космонавтами.

Почему ракета летит?

Вообще говоря, сам принцип реактивного движения интуитивно понятен. Но многие, увы, до сих пор путаются в деталях. Наверное, потому что смотрят голливудские фильмы, а там вечно что-нибудь забористое изобразят. Например, приходилось слышать мнение, будто бы ракета отталкивается от воздуха. Но как же в таком случае она летает в космосе, где нет воздуха?

Легко понять из названия, что реактивное движение – это движение за счет силы реакции, отдачи. Скажем, вы стреляете из пистолета – отдача после вылета пули выворачивает руку. Это и есть сила реакции. Если бы при выстреле вы находились, допустим, на борту орбитальной станции, в невесомости, то отдача придала бы вам реактивное движение и вы полетели бы в противоположную сторону от пули.

Механику реактивного движения описывают с помощью третьего закона Ньютона. Мы со школы помним его формулировку: тела действуют друг на друга силами, равными по модулю и противоположными по направлению. Или: сила противодействия равна силе действия. В случае ракет силой действия является тяга, которая создается раскаленными газами, вырывающимися из сопла. Они и толкают ракету в противоположную сторону. Поэтому ракета не нуждается в приложении каких-то других сил; она сама создает силу действия, а за счет силы противодействия, реакции, отдачи летит с ускорением не только в атмосфере, но и в космосе.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Можно ли забить гвоздь в космосе и другие вопросы о космонавтике"

Книги похожие на "Можно ли забить гвоздь в космосе и другие вопросы о космонавтике" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Рязанский

Сергей Рязанский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Рязанский - Можно ли забить гвоздь в космосе и другие вопросы о космонавтике"

Отзывы читателей о книге "Можно ли забить гвоздь в космосе и другие вопросы о космонавтике", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.