» » » » Уильям Дитрих - Пирамиды Наполеона


Авторские права

Уильям Дитрих - Пирамиды Наполеона

Здесь можно скачать бесплатно "Уильям Дитрих - Пирамиды Наполеона" в формате fb2, epub, txt, doc, pdf. Жанр: Исторический детектив, издательство Эксмо, Домино, год 2008. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Уильям Дитрих - Пирамиды Наполеона
Рейтинг:
Название:
Пирамиды Наполеона
Издательство:
Эксмо, Домино
Год:
2008
ISBN:
978-5-699-25724-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пирамиды Наполеона"

Описание и краткое содержание "Пирамиды Наполеона" читать бесплатно онлайн.



Франция, начало XIX века. Американец Итан Гейдж, приехавший в Париж по делам, выигрывает за карточным столом старинный медальон, якобы сделанный в Египте и принадлежавший некогда царице Клеопатре. Этот золотой диск, покрытый непонятными символами, несомненно, хранит какие-то секреты. Но Гейдж не успевает это выяснить: той же ночью он ложно обвинен в убийстве и вынужден бежать из Франции. Ему удается примкнуть к группе ученых, отправляющихся вместе с Наполеоном в египетскую экспедицию. Прибыв в эту экзотическую страну, Гейдж начинает подозревать, что медальон поможет разрешить одну из величайших загадок в мире — тайну Великой пирамиды.






Жомар вновь вытащил своего окаменевшего наутилуса.

— Наверху воздух так прозрачен, вы не находите? Пирамида как будто очищает его вокруг себя.

Плюхнувшись на камни, он принялся выводить пальцем какие-то фигуры.

— Одной прозрачностью сыт не будешь, — сказал Тальма, присаживаясь с преувеличенным смирением. — Разве я не упоминал, что проголодался?

Но Жомар уже погрузился в свой странный мир, и мы предпочли посидеть спокойно, успев привыкнуть к подобным медитациям наших ученых спутников. Созерцая бескрайние дали, я даже разглядел округлость нашей планеты, но быстро опомнился и отругал сам себя, осознав, что на такой скромной высоте это лишь обман зрения. И однако на вершине этого сооружения появилось ощущение какой-то благоприятной сосредоточенности, и я поистине наслаждался нашим спокойным уединением. Ступала ли сюда когда-нибудь нога другого американца?

Наконец Жомар резко встал, взял обломок известняка размером с кулак и со всего маху швырнул его вдаль. Мы наблюдали за параболой его падения, размышляя, долетит ли он до основания пирамиды. Но, естественно, силы броска не хватило, и камень уже прыгал вниз, отскакивая от каменных ступеней и разбиваясь на куски. Обломки с тихим стуком доскакали до самого низа.

Жомар задумчиво поглядывал вниз, словно размышляя, достиг ли обломок нужной цели. Затем повернулся к нам.

— Ну конечно же! Это так очевидно. И ваша наблюдательность, Гейдж, дала мне ключ к разгадке!

Я навострил уши.

— Неужели?

— Мы с вами стоим на уникальном, чудесном творении! Какая кульминация мысли, философии и вычислений! Именно наутилус позволил мне прозреть!

Тальма вытаращил глаза.

— И каково же ваше прозрение?

— Итак, слышали ли, вы, друзья мои, о возвратной последовательности чисел Фибоначчи?

Наше молчание было достаточно выразительным.

— О ней стало известно в Европе около тысяча двухсотого года благодаря Леонардо Пизанскому, также известному как Фибоначчи, прошедшему курс обучения в Египте. История ее подлинного происхождения теряется во мраке тысячелетий. Взгляните.

Он показал нам листок бумаги. Там была написана последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

— Вы замечаете закономерность этого ряда?

— По-моему, я как-то раз написал такие числа в лотерее, — уныло сообщил Тальма. — Они оказались невыигрышными.

— Нет, вы только посмотрите, как он образуется! — с воодушевлением продолжил ученый. — Каждое число является суммой двух предыдущих. Для вычисления очередного числа последовательности нужно сложить два последних — тридцать четыре и пятьдесят пять, и получим восемьдесят девять.

— Очаровательно, — нетерпеливо сказал Тальма.

— Самое потрясающее свойство этого ряда заключается в том, что с помощью геометрии его можно представить не просто как числа, а как ряд геометрических фигур. И мы с вами можем создать его, изобразив квадраты. — Он начертил два маленьких квадрата и поставил в них по единице. — Видите, вот два первых числа последовательности. Теперь пририсуем к ним третий квадрат, таким образом, чтобы сумма их сторон составила длину стороны нового квадрата, и обозначим его числом два. Далее, использовав сумму сторон единичного и двойного квадрата, пририсуем к ним тройной квадрат. Понимаете? — Он ловко начертил еще несколько фигур. — Сторона нового квадрата равна сумме двух сторон предыдущих квадратов, так же как и числа в последовательности Фибоначчи образуются из суммы двух предшествующих чисел. Площадь квадратов быстро растет.

Вскоре у него получилась вот такая картинка:[49]

— А что означает то число сверху: один, шесть и так далее? — спросил я.

— Это соотношение длины стороны каждого из квадратов к стороне квадрата предыдущего, — ответил Жомар. — Заметьте, что соотношение стороны квадрата, обозначенного числом три, к стороне квадрата, обозначенного числом два, точно такое же, как соотношение, скажем, у квадратов «восемь» и «тринадцать».

— Я не понимаю.

— Вы же видите, что верхняя сторона квадрата «три» разделена на два неравных отрезка общей точкой квадратов «один» и «два», — терпеливо пояснил Жомар. — Так вот, пропорция между численными значениями сторон смежных квадратов остается постоянной, сколько бы квадратов вы ни добавили к этому чертежу. Более длинный отрезок больше не в полтора раза, а в одну целую шестьсот восемнадцать сотых раза, именно такую пропорцию греки и итальянцы называли золотым числом, или золотым сечением.

Мы с Тальма оба слегка напряглись.

— Вы имеете в виду, что оно каким-то образом связано с поисками золота?

— Да нет же, кретины. — Усмехнувшись, он с досадой мотнул головой. — Только то, что эти пропорции являются совершенными в применении к архитектуре или к памятникам вроде этой пирамиды. Есть нечто в этом соотношении, что невольно радует глаз. И конструкции соборов отражали такие божественные числа. Для достижения гармоничной композиции художники Ренессанса делили свои полотна на прямоугольники и треугольники, воспроизводящие соотношения золотого сечения. Греческие и римские архитекторы применяли его при строительстве храмов и дворцов. В общем, нам придется подтвердить мою гипотезу более точными измерениями, чем мы произвели сегодня, но я предчувствую, что числовое выражение угла наклона этой пирамиды будет точно соответствовать золотому числу, одна целая шестьсот восемнадцать сотых.

— А при чем тут наш наутилус?

— Я подхожу к этому. Для начала представьте линию, опускающуюся вниз, нам под ноги, с вершины этой громадины к основанию, вертикально вниз.

— Учитывая наше восхождение, я могу подтвердить, что это будет очень длинная линия, — заметил Тальма.

— Да, более четырехсот пятидесяти футов, — согласился Жомар. — А теперь мысленно проведите линию из центра пирамиды к ее внешней грани.

— Она будет равна половине ширины основания, — рискнул я предположить, осознавая, что, как и в беседах с Франклином, могу уловить лишь пару следующих шагов его рассуждений.

— Совершенно верно! — воскликнул Жомар. — У вас есть математическая интуиция, Гейдж! Теперь, представив линию, протянувшуюся от основания внешней стороны сюда к нам, к вершине пирамиды, мы получим правильный треугольник. Мое предположение заключается в том, что если опущенный нами к основанию перпендикуляр принять за единицу, то сторона поднимающегося к вершине треугольника будет равна одной целой шестистам восемнадцати тысячным — то есть мы получим ту самую гармоничную пропорцию, что отражена в нарисованных мной квадратах!

На его лице отразилось ликование. А на наших — явное недоумение.

— Ну как же вы не понимаете! Эту пирамиду построили в соответствии с числами Фибоначчи, квадратами Фибоначчи, с золотым числом, которое все художники считали гармоничным. И даже если мы того не осознаем, оно является истинной гармонией!

Тальма бросил взгляд на две соседние пирамиды.

— И все они построены именно так?

Жомар покачал головой.

— Нет. Я подозреваю, что большая пирамида имеет особое назначение. Она подобна книге, что-то рассказывающей нам. Она уникальна, хотя причины я пока не понимаю.

— Извините, Жомар, — сказал журналист. — Я, конечно, счастлив, что вас это все так порадовало, но тот факт, что воображаемая линия равна примерно одной целой и шести десятым, как вы говорили, представляется слишком уж ничтожной причиной для построения пирамиды, которой еще предназначено как-то отражать полушарие, или для сооружения пустой гробницы. И если ваши гипотезы хоть отчасти верны, то, вероятнее всего, древние египтяне были по меньшей мере так же безумны, как умны.

— Ах, мой друг, вот тут-то вы как раз и ошибаетесь, — радостно ответил ученый. — Я не виню вас за скептицизм, поскольку и сам целый день не замечал очевидного, пока остроглазый Гейдж не помог мне отыскать отпечаток наутилуса. Вы понимаете, последовательность чисел Фибоначчи переводится в геометрическую фигуру Фибоначчи, отображая один из самых прекрасных узоров в природе. Давайте нарисуем дугу, проходящую по нашим квадратам. — Он перевернул свой чертеж. — Смотрите, у нас получается вот такая кривая:[50]

— Вот! И на что это похоже?

— На наутилуса, — рискнул высказаться я.

Наш спутник был чертовски умным, хотя я еще не понимал, куда он клонит.

— Совершенно верно! Представьте, что я дорисовал этот чертеж, добавив квадраты «двадцать один», «тридцать четыре» и так далее. Эта спираль будет продолжать закручиваться, набирая витки и становясь все больше похожей на нашего наутилуса. И такой спиральный узор можно встретить повсюду. Если от последовательности Фибоначчи перейти к ее геометрической интерпретации, а затем от геометрического отображения перейти к природе, то вы обнаружите великое множество его повторений, эту совершенную спираль создал сам Господь. Вы обнаружите спираль в зародыше цветка или в семечке сосновой шишки. Лепестки многих цветов повторяют числа Фибоначчи. У лилии три лепестка, у лютика — пять, у дельфиниума — восемь, у ноготков — тринадцать, у некоторых видов астр — двадцать один, а у некоторых ромашек — тридцать четыре. Не у всех растений обнаруживается такой узор, но у многих, поскольку это наиболее результативный путь выталкивания растущих семян или лепестков из некоего единого центра. И он необычайно красив. Итак, теперь мы до конца понимаем, какие чудеса скрывает эта пирамида! — Он удовлетворенно кивнул головой, радуясь своему новому объяснению.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пирамиды Наполеона"

Книги похожие на "Пирамиды Наполеона" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Уильям Дитрих

Уильям Дитрих - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Уильям Дитрих - Пирамиды Наполеона"

Отзывы читателей о книге "Пирамиды Наполеона", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.