» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






Естественно подумать, что если проблема в том, что в ТТЧ есть «дырка» — иными словами, неразрешимое суждение G — то почему бы нам не заткнуть эту дырку? Почему бы не добавить G к ТТЧ в качестве шестой аксиомы? Конечно, по сравнению с остальными аксиомами, G — неуклюжий великан, и получившаяся система ТТЧ + G выглядела бы довольно комично из-за диспропорции ее аксиом. Тем не менее, это предложение имеет смысл. Представим себе, что перед нами ТТЧ + G — высшая формальная система. Мы надеемся, что она не только свободна от супернатуральных чисел, но и полна. Безусловно то, что ТТЧ + G лучше ТТЧ по крайней мере в одном, строчка G больше не является в ней неразрешимой, поскольку теперь она превратилась в теорему.

В чем же была причина недостатков ТТЧ? Ее уязвимость объяснялась тем, что она была способна говорить о себе самой. В частности, источником неприятностей было высказывание:

«Я не могу быть доказано в формальной системе ТТЧ»

или, более подробно,

«Не существует такого натурального числа, которое составляло бы пару доказательства ТТЧ с Гёделевым номером этой строчки.»

Есть ли у нас причина ожидать, что ТТЧ + G будет неуязвима для Гёделева доказательства? На самом деле, нет. Наша новая система может выразить ничуть не меньше, чем ТТЧ. Поскольку Гёделево доказательство основывается, прежде всего, на выразительной мощи формальной системы, будет неудивительно, если наша новая система окажется подверженной тому же недугу, как и ТТЧ. Для этого нужно будет найти строчку, выражающую высказывание:

«Я не могу быть доказано в формальной системе ТТЧ + G»

После того, как мы проделали подобное в ТТЧ, это совсем несложно. Принципы здесь те же самые, только контекст слегка изменен (Образно говоря, это все равно, что пропеть известную нам мелодию тоном выше.) Как и раньше, нужная нам строчка — назовем ее G' — строится при посредстве «дяди». Но теперь, вместо пары доказательства ТТЧ, она основывается на похожем, но немного более сложном понятии пары доказательства ТТЧ + G. Понятие пар доказательства ТТЧ + G — всего лишь небольшое расширение понятия пар доказательства ТТЧ.

Можно представить себе подобное расширение для системы MIU. Мы имели дело с неизмененной формой пар доказательства MIU. Если бы мы теперь добавили MU в качестве второй аксиомы, у нас получилась бы новая система — MIU + MU. Деривация в такой расширенной системе выглядела бы так:

MU аксиома

MUU правило 2

Существует пара доказательства MIU + MU, соответствующая этой деривации: m = ЗОЗОО, n = 300. Разумеется, эта пара чисел не является парой доказательства MIU, а всего лишь парой доказательства MIU + MU. Добавление дополнительной аксиомы ненамного усложнило арифметические свойства пар доказательства. Самое главное их свойство, примитивно-рекурсивность, сохраняется и в новой системе.

Метод Гёделя используется еще раз

Вернувшись к ТТЧ, мы находим похожую ситуацию. Пары доказательства ТТЧ + G, как и их предшественницы, примитивно рекурсивны. Они представимы в ТТЧ + G с помощью формулы, которую мы сократим следующим очевидным образом:

ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

Теперь мы должны повторить знакомую процедуру. Чтобы сконструировать строчку, соответствующую G, начнем снова с «дяди»:

~Eа:Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

ΛARITHMOQUINE {а'',а'}>

Предположим, что Гёделев номер этой строчки — d'. Теперь мы арифмоквайнируем самого дядю. Это даст нам G':

~Eа:Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + G){a,a'}

ΛARITHMOQUINE {SSS.... SSSO/a'',a'}>

.                        |______|

.                  S повторяется d' раз

Интерпретация этой строчки такова:

«Меня нельзя доказать в формальной системе ТТЧ + G».

Разветвление

После этого остаются лишь технические детали. G' в ТТЧ + G — то же самое, чем G была в ТТЧ. Оказывается, что либо G, либо G' может быть добавлена к ТТЧ + G, и что результатом этого является дальнейшее разветвление теории чисел. Если вы думаете, что подобное происходит только с «положительными типами», то вы ошибаетесь: точно такой же трюк можно сыграть с ТТЧ + ~G, то есть, с нестандартным вариантом теории чисел, полученным путем добавления к ТТЧ отрицания G. Из рис. 75 видно, что у ТТЧ могут быть самые разные разветвления:


Рис. 75. Разветвление ТТЧ. У каждого нового варианта ТТЧ — своя Гёделева строчка; эта строчка или ее отрицание могут быть добавлены к системе, так что из каждой системы могут родиться два новых варианта; этот процесс может продолжаться до бесконечности.

Разумеется, это только начало. Представьте себе, что мы движемся вниз по самой левой ветви этого дерева, всегда добавляя саму Гёделеву строчку (а не ее отрицание). Это большее, что мы можем сделать, чтобы избавиться от супернатуральных чисел. После добавления G мы добавляем G'; затем G'', G''' и так далее. Каждый раз, когда мы производим новый вариант ТТЧ, ее уязвимость против Черепашьего метода — простите, я имею в виду Гёделева метода — позволяет вывести новую строчку, интерпретируемую как:

«Я не могу быть доказана в формальной системе X».

Разумеется, через некоторое время весь этот процесс начинает казаться привычным и легко предсказуемым — ведь все эти «дырки» делаются при помощи одной и той же техники! Это означает, что, как типографские объекты, они все сделаны по одному и тому же эталону — что, в свою очередь, означает, что они могут быть представлены с помощью одной-единственной схемы аксиом. Так почему бы нам не попытаться заткнуть все дырки одним махом, чтобы раз и навсегда избавиться от этой противной неполноты? Вместо того, чтобы добавлять по одной аксиоме, мы можем добавить к ТТЧ схему аксиом. Эта схема аксиом будет тем эталоном, по которому будут изготовляться G, G', G'', G''' и так далее. Может быть, что путем добавления этой схемы аксиом (назовем ее «Gω.») нам удастся перехитрить метод «Гёделизации». Действительно, кажется совершенно ясным, что добавление Gω, к ТТЧ будет последним шагом, необходимым для полной аксиоматизации всех истин теории чисел.

Этот момент соответствует тому месту «Акростиконтрапунктуса», где Черепаха рассказывает о создании Крабом патефона «Омега». Однако читатели были оставлены в неизвестности по поводу судьбы этого аппарата, поскольку усталая Черепаха решила поползти домой спать (но прежде, чем уйти, хитрое животное сделало тонкий намек на Теорему Гёделя о неполноте). Теперь, наконец, у нас дошли руки до того, чтобы прояснить ту ситуацию… Возможно, что, прочтя Диалог «Праздничная Кантататата», вы уже подозреваете, каков будет ответ.

Непополнимость

Как вы, наверное, и подозревали, даже это фантастическое улучшение ТТЧ не может избежать той же судьбы. Странно, что происходит это по той же причине, что и раньше. Схема аксиом недостаточно мощна, и к ней снова приложимо Гёделево построение. Постараюсь это объяснить. (Существует более строгое объяснение, чем то, которое я приведу здесь.) Если бы удалось описать все строчки G, G', G'', G''', … при помощи одной-единственной типографской схемы, это означало бы, что существует способ описать Гёделевы номера этих строчек при помощи одной-единственной арифметической схемы. И этот арифметический портрет бесконечного класса чисел может быть представлен в ТТЧ + G' при помощи некоей формулы АКСИОМА-ОМЕГА{а}, которая интерпретируется следующим образом: «а — это Гёделев номер одной из аксиом, получающихся из Gω». Когда a заменяется на какой-либо определенный символ числа, получившаяся формула будет теоремой ТТЧ + Gω тогда и только тогда, когда этот символ представляет собой Гёделев номер аксиомы, принадлежащей этой схеме.

С помощью этой новой формулы становится возможным представить даже такое сложное понятие как пара-доказательства-ТТЧ + Gω внутри ТТЧ + Gω:

ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + Gω){a,a'}

Используя эту формулу, мы можем построить нового «дядю» и затем приступить к его арифмоквайнированию уже знакомым нам способом, производя таким образом еще одну неразрешимую строчку, которую мы назовем «ТТЧ + Gω+1». Вы, наверное, спросите, почему ТТЧ + Gω+1 не находится среди аксиом, порожденных нашей схемой аксиом ТТЧ + Gω? Ответом является то, что ТТЧ + Gω оказалась недостаточно хитра, чтобы предусмотреть возможность своего собственного включения в теорию чисел.

В «Акростиконтрапунктусе» Черепаха, чтобы создать «непроигрываемую запись», должна была достать чертежи того патефона, который она собиралась разрушить. Это было необходимо для того, чтобы вычислить, какой тип вибраций обладает разрушительной силой для данного патефона, и затем создать запись, в звуковых дорожках которой были бы закодированы именно такие звуки. Это довольно близкая аналогия с методом Гёделя, где собственные свойства системы отражаются в понятии пар доказательства и затем используются против нее самой. Любая система, как бы сложна она ни была, может быть подвергнута Гёделевой нумерации, после чего в ней может быть определено понятие пар доказательства — и это будет ружьем, которое выстрелит в самого охотника. Как только система определена, упакована в «коробку», она становится уязвимой.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.