» » » » Эдмунд Цихош - Сверхзвуковые самолеты


Авторские права

Эдмунд Цихош - Сверхзвуковые самолеты

Здесь можно скачать бесплатно "Эдмунд Цихош - Сверхзвуковые самолеты" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство М.: Мир, год 1983. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Эдмунд Цихош - Сверхзвуковые самолеты
Рейтинг:
Название:
Сверхзвуковые самолеты
Издательство:
М.: Мир
Год:
1983
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сверхзвуковые самолеты"

Описание и краткое содержание "Сверхзвуковые самолеты" читать бесплатно онлайн.



В книге польского авиационного специалиста приведены основные летно-технические характеристики, фотографии, чертежи общих видов и компоновочных схем большинства современных отечественных и зарубежных сверхзвуковых самолетов. Кратко излагается история их разработки. Описывается оборудование различных типов сверхзвуковых самолетов и рассматриваются научно-технические проблемы, связанные с их созданием. Наиболее полное для настоящего времени справочное руководство по зарубежным и отечественным сверхзвуковым самолетам. Для конструкторов самолетов, студентов соответствующих специальностей вузов и лиц, интересующихся авиацией.

Прим. OCR: Первая появившаяся в СССР в открытой печати монография по сверхзвуковым самолетам. Охват и качество материала позволяют занимать этой книге одно из первых мест по упоминаниям в авиационной литературе по реактивным самолетам.






Склеивание выгодно также и с технологических позиций, так как уменьшает число сборочных операций и позволяет стандартизировать способы производства большинства блоков (сборочных единиц) планера. В планере самолета В-58 использованы различные конструкционные материалы. Около 15% поверхностей выполнено из нержавеющего листа методом пайки (в основном обшивка хвостовых частей гондол двигателей и пилонов, а также нижних частей крыла, подвергаемых воздействию выхлопных газов двигателей). Остальная часть обшивки изготовлена из дюралевых листов (склеивание) толщиной 0,25-1,00 мм с заполнителем из алюминиевой фольги или из стеклоткани, пропитанной смолой. Благодаря использованию слоистой конструкции взлетная масса планера самолета В-58 снижена почти до 16% в сравнении с 25% для самолетов, изготавливавшихся традиционными методами. Одной из важнейших проблем, решенных при разработке планера этого самолета, была защита находящегося в крыльевых баках топлива от изменений температуры обшивки под воздействием солнечного и аэродинамического нагрева; эти изменения были особенно опасны в связи с неблагоприятным отношением площади поверхности конструкции к объему топлива. Оказалось, что применение слоистой конструкции выгодно и с этой точки зрения.

Однако клееные конструкции затруднительно применять в самолетах, скорость которых превышает М ~ 2, из-за существенного снижения прочности таких конструкций с ростом температуры.

Ввиду этого для создания самолета, например, ХВ-70 с крейсерской скоростью М = 3 оказалось необходимым применение новых материалов и технологии, а также соответствующего оборудования, поскольку в полете с такой скоростью планер подвергается воздействию высоких температур, неприемлемых для освоенных клеевых конструкций. Исследования показали, что воздухозаборник и передняя кромка крыла самолета нагреваются до 315-340°С, а остальные поверхности-до 200-230°С. Так как самолет предназначался для длительных полетов, то потребовалось применение материалов с высокими механическими характеристиками в этом диапазоне температур, а также устройств охлаждения и теплоизоляции отсеков оборудования, топливных баков и т.п.

70% массы планера самолета ХВ-70 составляют детали из нержавеющей стали, 17%-из конструкционной стали и 9,5%-из титана и сплавов никеля. По опубликованным данным, для постройки одного планера требуется 5420 кг титана; это значит, что масса планера самолета ХВ-70 достигала почти 57 т и составляла свыше 23% максимальной взлетной массы. Из нержавеющей стали в самолете ХВ-70 изготавливаются слоистые конструкции, из титана-элементы, подвергающиеся воздействию высоких температур (дестабилиза- тор, обшивка носовой части фюзеляжа и его хвостовой части в области двигательного отсека); титан пошел также на некоторые элементы других узлов планера. Слоистые конструкции (толщиной ~ 25 мм) выполнены из стальной фольги толщиной 0,15 мм (увеличение толщины фольги всего на 0,025 мм приводит к возрастанию массы планера почти на 1000 кг), которая соединяется с сотовым наполнителем путем пайки в атмосфере аргона. В качестве припоя использован сплав серебра с добавкой 7,3% меди и 0,2% лития.


Рис. 1.40. Конструкция и расположение клееных элементов планера самолета «Валькирия» ХВ-70А.


Непрерывное возрастание требований к самолетам привело к тому, что уже в 60-х годах начали применяться, особенно при изготовлении крыла, моноблочные конструкции с монолитными панелями, при этом слоистые конструкции использовались при изготовлении управляющих поверхностей, крышек ниш и отсеков, стенок воздушных каналов двигателей, а иногда и обшивки фюзеляжа. Монолитные панели, часто довольно сложной формы, изготавливаются из одного куска материала. Такой подход позволяет выполнить важнейшую часть планера – обошивку крыла – как одно целое с элементами жесткости, без деталей крепления. При этом нередко оказывается возможным в зависимости от габаритов самолета изготовить крыло только из двух частей (нижней и верхней), дополнив их отдельными конструкциями носка и подвижных элементов. Кроме того, такая конструкция дает возможность выполнить обшивку с переменной толщиной как вдоль размаха, так и вдоль хорды. Возможность выбора формы продольных и поперечных сечений крыла в соответствии с распределением нагрузок позволяет оптимально использовать материал с точки зрения прочности.

Следовательно, крыло такой конструкции имеет ряд достоинств в сравнении, например, с клепаным. К основным из этих достоинств можно отнести: уменьшение массы вследствие уменьшения числа деталей и соединений, повышение прочности, высокое качество наружной поверхности, упрощение технологии сборки и сокращение подготовительных работ, увеличение производственных возможностей самолетостроительного предприятия и т.п.

В зависимости от принятой технологии монолитные панели изготавливаются путем штамповки, фрезерования, ковки либо прессования, причем это может быть конструкция как с постоянным, так и переменным сечением в любом направлении.

В настоящее время широкое распространение в самолетостроении нашел метод фрезерования. Поскольку изготовление жестких крупногабаритных деталей методом фрезерования часто требует применения уникального оборудования, то, кроме механического фрезерования, используется также и метод химического фрезерования (травления). Этот метод изготовления деталей основан на том, что определенная часть металла удаляется с намеченных участков поверхности заготовок погружением их в ванны с растворами, обладающими сильными коррозионными свойствами. Производительность химического фрезерования такая же, а иногда даже и выше, чем механического, а стоимость значительно ниже. Этот метод имеет еще и то дополнительное преимущество, что он позволяет получить такие конфигурации, которые недостижимы при других методах обработки.

В производственной практике используются травильные среды двух типов: кислотные и щелочные. Кислотные ванны вызывают межкристаллитную коррозию. Этот процесс очень производителен и находит применение прежде всего при обработке стальных материалов. Однако таким способом не удается изготовить детали с высокой размерной точностью ввиду трудности контроля скорости процесса травления. Кроме того, компоненты кислотных растворов относительно дороги. Щелочные растворы значительно дешевле, процесс травления в них также производителен (если он проводится при температуре 80-90°С), а скорость травления можно просто и довольно точно контролировать. С учетом меньших затрат на материалы чаще всего применяются растворы едкого натра.

Таким образом, технический прогресс в самолетостроении в 1950-1960-х гг. привел к освоению новых технологических методов изготовления и соединения частей планера, что не только значительно снизило собственную массу самолета, но и позволило повысить прочность планера, особенно усталостную. Предполагается, что уже в ближайшее время будет достигнут дальнейший прогресс в этой области, в частности, благодаря лучшему исследованию воздействий окружающей среды, совершенствованию расчетных методов, широкому применению средств повышения надежности и моноблочных конструкций и т.п., а также в связи с упомянутыми выше работами в области активного управления и увеличения числа управляемых степеней свободы самолета.

Более точное определение воздействий окружающей среды оказывает непосредственное влияние на определение параметров конструкции в том смысле, что уменьшает «степень незнания», которая вынужденно учитывается в расчетах в виде коэффициентов запаса. Это относится не только к новым исследованиям, но и к накоплению статистических данных, касающихся, в частности, знакопеременных нагрузок.

Благодаря прогрессу вычислительной техники стало возможным применение новых методов расчета (например, метод конечных элементов), учитывающих такие специфические характеристики материалов, как пластичность, анизотропия и т.д. Увеличение степени детализации расчетов оказалось важным средством, позволившим существенно продвинуться по пути оптимизации конструкции.

Концепция безопасных повреждений нашла применение в самолетостроении из-за заботы скорее о безопасности, чем об улучшении летных характеристик, однако уже сейчас она оказывает существенное влияние также и на массу самолета, а особенно на прочностную надежность планера. Эта концепция предусматривает расчет каждой силовой детали планера, исходя из предпосылки, что в детали могут существовать дефекты, возникшие во время ее изготовления и имеющие величину, равную пороговым значениям чувствительности обычно применяемых методов контроля. Следовательно, каждая деталь в условиях нормальной эксплуатации должна выдерживать переменные нагрузки без катастрофического роста дефектов и снижения прочности. До недавнего времени реализация этой концепции сводилась к местным усилениям конструкции. Предполагается, что дальнейший прогресс в этой области связан с более точным определением усталостного роста дефектов и учетом его в прочностных расчетах. Таким образом, оптимизация конструкции должна производиться с учетом коэффициента хрупкости материала так же, как это делалось ранее в отношении статической прочности, а теперь усталостной. Таким путем может быть повышена надежность конструкции планера и упрощена технология изготовления самолета.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сверхзвуковые самолеты"

Книги похожие на "Сверхзвуковые самолеты" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Эдмунд Цихош

Эдмунд Цихош - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Эдмунд Цихош - Сверхзвуковые самолеты"

Отзывы читателей о книге "Сверхзвуковые самолеты", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.