» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






102

Автор первого в мировой литературе учебника теории множеств Феликс Хаусдорф (1868-1942) долгие годы был одним из признанных лидеров берлинской математической школы. Его учебник по теории множеств имел два варианта, настолько резко различающиеся между собой, что их вполне можно считать самостоятельными книгами: «Основы теории множеств» (Grundzüge der Mengenlehre. Leipzig, Teubner, 1914) и «Теория множеств» (Mengenlehre. Leipzig, Teubner, 1927). Совершенно самостоятельным произведением мировой математической литературы является русский вариант той же книги [54], в которой редакторы П.С. Александров и А.Н. Колмогоров предприняли (весьма удачную) попытку совместить все достоинства и первого и второго вариантов книги Хаусдорфа, одновременно доработав отдельные части книги, с тем чтобы привести их в соответствие с новейшими достижениями науки. При этом устаревшие разделы «Основ теории множеств» были заменены новым текстом, заимствованным из написанных П.С. Александровым разделов книги [55], которые пришлось несколько переработать, с тем чтобы сохранить стиль Хаусдорфа.

103

Обычно считают, что русский алфавит содержит 33 буквы (при этом буквы е и ё отождествляются, считаются за одну); поэтому общее число «100-буквенных последовательностей», где каждая буква имеет одно из указанных 33 «значений», равно 10033. (Разумеется, большинство из составленных таким образом «фраз», разбиение которых на отдельные «слова», если только оно возможно, производится «по смыслу», не будут выражать ничего или не будут описывать никакого числа.)

104

Сомнения по этому поводу подогревались рядом полностью противоречащих нашей интуиции (или очень сильных и «слишком просто» доказываемых) результатов, получаемых с использованием аксиомы выбора Цермело. Наиболее известна здесь, пожалуй, эффектная работа Ф. Хаусдорфа, результат которой, несколько огрубляя, можно описать так: пусть Ш — обыкновенный шар трехмерного евклидова пространства; Хаусдорф разбивает этот шар на четыре множества I, II, III и IV так, что сложив по-другому множества I и II, мы получим из них шар Ш1, равный Ш; из множеств III и IV также можно сложить равный Ш шар Ш2. (Ср. гл. XII).

105

Можно взять множество с кардинальным числом N1 и рассмотреть множество всех его подмножеств, кардинальное число которого обозначается через 2N1. Как доказал Кантор, 2N1 > N1. Можно предположить, что 2N1 = N2 и что 2Nn = Nn+1. Такое предположение называется обобщенной гипотезой континуума.

106

Вариант гипотезы континуума, приведенный в скобках, не требует обращения к аксиоме выбора.

107

Сегодня это различие отражается в существовании двух разных символов:  (например, x  A) и (B  A), используемых уже и в школьных учебниках математики.

108

Пуанкаре А. О науке. — М.: Наука, 1983, c. 400.

109

Мы уже указывали на своеобразный характер религиозности Лейбница, для которого бог играл роль гаранта истинности логики, но, «создав однажды» Вселенную, далее никак не вмешивался в ее функционирование. (Разумеется, Лейбниц и не подозревал, что возможных логических систем существует много; осознание этого обстоятельства заставило бы его полностью пересмотреть всю свою религиозно-философскую систему.)

110

Рассчитанное на самого широкого читателя изложение взглядов А. Уайтхеда (а частично и Б. Рассела) на математику можно найти в (к сожалению, сейчас уже труднодоступной) книге [57].

111

Создатель современной алгебраической структуры математической логики Дж. Буль в качестве основных операций над высказываниями использовал конъюнкцию и исключающую дизъюнкцию (которую сегодня чаще называют «симметрической разностью» высказываний p и q).

112

Здесь терминология (и символика) авторов «Оснований математики» несколько расходится с принятой в нашей литературе. Следует различать (бинарное) отношение следования между высказываниями, которое может иметь или не иметь место (в абстрактной форме — подмножество декартова квадрата Ρ×Ρ, где Ρ — множество высказываний; отношение «из p следует q» записывают как p  q, но иногда и наоборот — как p  q), и импликацию — (бинарную) операцию алгебры высказываний, сопоставляющую двум высказываниям p и q третье высказывание p  q, которое, как и любое, высказывание, может быть истинным или ложным; при этом истинность импликации p q равносильна тому, что (в обозначениях Рассела — Уайтхеда) p  q.

113

Под «истинным элементарным высказыванием» здесь понимается то, что у нас часто называют «тождественно истинным высказыванием», т.е. такое высказывание, которое ни в каком случае не может быть ложным.

114

По этому поводу см. статьи выдающихся физиков, лауреатов Нобелевской премии Е.П. Вигнера [96]*, Ч. Янга [60] и В. Гейзенберга [61]; цитируемые в гл. XV высказывания А. Эйнштейна и названные там его статьи, а также [4].

115

Разумеется, из (ложной!) «аксиомы» 2×2 = 100 следует (истинная!) теорема «2×2 — четное число» (как, впрочем, и теорема «2×2 — нечетное число», если только следование предложений понимать в соответствии с определением материальной импликации).

116

По поводу современных взглядов на роль интуиции и дедукции в понимании мира см., например [32], а также [62].

117

Предложенное (почти одновременно и, по видимому, независимо) Р. Дедекиндом и Дж. Пеано аксиоматическое описание целых (или целых положительных — натуральных) чисел хронологически почти совпало со смертью Кронекера (основополагающая работа Пеано вышла в свет в год смерти Кронекера); поэтому он уже не мог высказать свое мнение по поводу этой новой теории.

118

Предшествующее Кантору доказательство существования трансцендентных чисел принадлежит французскому математику Жозефу Лиувиллю (1809-1882), построившему конкретные примеры таких чисел (1851); Кантор же доказал, что в определенном смысле «почти все» вещественные числа являются трансцендентными (причем его доказательство было существенно «неконструктивным», т.е. не позволяло указать ни одного такого числа).

119

По поводу полемики между Пуанкаре и Кутюра см. [63].

120

Интуиционистскую платформу Вейля достаточно выразительно характеризует сборник его более ранних статей [64].

121

Нам нет необходимости вдаваться в технические детали этих теорем. Мы упоминаем их лишь для того, чтобы привести конкретные примеры. [Отметим также, что отказ интуиционистов от закона исключенного третьего не означал еще полного отказа от какого бы то ни было логического аппарата — речь шла лишь о пересмотре фундаментальных законов логики, из числа которых отбрасывался закон исключенного третьего (ср. ниже). — Прим. ред.]

122

Несколько иначе подходил к понятию «существования» математического объекта Пуанкаре. Для него, как для формалистов (гл. XI), понятие было приемлемым, если оно не приводило к противоречиям.

123

В настоящей, не рассчитанной на математиков, книге автор иногда позволяет себе пренебречь точностью ради большей выразительности. В частности, приведенный в книге пример «истинные интуиционисты», пожалуй, и не приняли бы [менее яркий, но более корректный пример: задача об отыскании максимума функции переменных]. Дело в том, что множество всевозможных четверок (x, y, z, n) целых (или натуральных) чисел счетно, т.е. его можно упорядочить наподобие ряда натуральных чисел (где n > 2). Поэтому доказательство существования решения уравнения Ферма одновременно устанавливает, что решение может быть найдено в процессе, конечного (хоть и неопределенно длинного — это неважно!) перебора четверок (x, y, z, n) и проверки выполнимости равенства xn + yn = zn для каждой из них, а такой конечный перебор, разумеется, является вполне эффективной процедурой.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.