» » » » Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.


Авторские права

Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.

Здесь можно купить и скачать "Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле." в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство ОАО ордена "Знак почета" "Смоленская областная типография им. В.И.Смирнова", год 2011. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.
Рейтинг:
Название:
КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.
Издательство:
неизвестно
Жанр:
Год:
2011
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле."

Описание и краткое содержание "КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле." читать бесплатно онлайн.



Книга доктора биологических наук Феликса Петровича Филатова "КЛЕЙМО СОЗДАТЕЛЯ" (все буквы прописные) посвящена одной из версий происхождения жизни на Земле, аргументированной весьма любопытными формальными особенностями молекулярной организации одного из ее ключевых феноменов — генетического кода, на которые обращается незаслуженно мало внимания. Одновременно эта версия может оказаться решением известного парадокса Ферми, в основе которого лежит вопрос о существовании разумной жизни за пределами нашей звездной системы и о возможности общения и встречи с инопланетными цивилизациями. Книга (ее откорректированное издание выложено в Сети; бумажную версию можно приобрести у автора) располагает к фундаментальным размышлениям и ее с интересом прочтут биологи, биофизики и биохимики, математики, философы, а также те, кто интересуется космологией вообще.





Так что же такое вирус, простейшая форма жизни? В самом общем виде вирус — это (химически) неотличимый от адресного (клеточного) информационный носитель с автономной программой самовоспроизведения и синтезов, которая для своей реализации использует читающие (базирующиеся на генетическом коде), синтетические (в т.ч. рибосомы) и энергетические (митохондрии) машины адресата. Под это определение подпадают все вирусы — то есть, те, о которых мы говорили и к которым относятся уточнения в скобках («нуклеиново-белковые»), а кроме них — также компьютерные и социальные. И все же, несмотря на высокий уровень обобщения, вирус определяется здесь только в информационных терминах (носитель, программа, чтение, код); ничто в этом определнии не указывает на происхождение или эволюцию вирусов, и ничто не указывает на их роль в живой природе (креационист сформулировал бы это иначе: «Для чего они? С какой целью созданы?»). Между тем, без этих аспектов приведенное определение (как и определение любого биологического — в отличие от физического — объекта) неполно. Дело в том, что физические законы, по преимуществу, обратимы во времени, оно просто не имеет для них значения. Основной же (и очевидный) биологический закон — развитие, необратимое изменение во времени. Это позволяет описывать жизнь в терминах термодинамики, второй закон которой как раз и определяет направление развития в закрытых системах (лишенных внешних источников энергии) в сторону равновесия, тепловой диссипации энергии, разрушения структур и нарастания беспорядка, мерой чего является особый параметр, называемый энтропией. Параметр, обратный энтропии — негэнтропия — определяет меру порядка системы и в принципе соотносится с понятием информация. Вот почему так близки информационные и термодинамические определения жизни.

В закрытой системе покоящийся вирус — даже при температурах, близких к абсолютному нулю, — будет неизбежно постепенно разрушаться. В открытой же системе, частью которой является его «родильный и воспитательный дом» — клетка, он будет поддерживать свою структуру и свое существование, неравномерный ритм которого выглядит как короткие перебежки между состояниями покоя. И хотя такой ритм отличается от того, в каком живет Homosapiens, существование которого в промежутках между актами репродукции (эквивалент упомянутых «перебежек» вируса) не является чем-то вроде летаргического сна, это не дает человеку никаких оснований утверждать, что вирус (в отличие от человека) — не существо, а нечто, намного более примитивное. Центральными отличительными феноменами, объединяющим на Земле все живое — будь то слон, человек, морковка или вирус, — являются хиральность молекул жизни и генетический код, связывающий две основные молекулярные составляющие этой жизни — белки и нуклеиновые кислоты. Что до кристаллического состояния вируса, то, во-первых, оно достигается, по преимуществу, в искусственных условиях эксперимента. В природе вирус вне клетки в кристаллическом виде как-то не встречается. Регулярные структуры, наблюдаемые на срезах инфицированных вирусом клеток под электронным микроскопом, — это не обязательно то, чем можно заразить здоровую клетку. Да и капсулы с телами астронавтов, погруженных в низкотемпературный анабиоз, которые направляются к далекой галактике и будут автоматически «разморожены» у цели, имеет смысл разместить в корабле экономно, так что вид плотной упаковки таких капсул будет неизбежно обладать внешними свойствами кристалла. Попробуйте теперь возразить потив понятия кристаллизация астронавтов и утверждать, приняв это понятие, что астронавты эти — не существа вовсе, а какое-то вульгарное вещество!

Жизнь, определяемая в информационных терминах, выводит ответ на вопрос о том, как она возникла, за рамки мистики, поскольку, как показал еще Алексей Ляпунов, информация — в отличие от материи или энергии — может как возникнуть «из ничего» — так и без следа исчезнуть: законы сохранения на нее не распространяются.

ГенриКастлер отмечал, что новая информация проявляется в виде случайного события, результат которого системе удается запомнить. При этом и способность системы генерировать непредсказуемые, случайные события (флуктуации), и ее способность запоминать их следствия, и связанная со всем этим способность к самовоспроизведению прямо зависят, как показал Иоганн фон Нейман (американец венгерского, между прочим, происхождения), от сложности системы. Чем система проще, тем выше ее склонность к вырождению.Чем она сложнее, тем выше вероятность ее динамической стабильности, ее способности к самоподдерживанию и даже росту. Системы, способные эволюционировать в сторону усложнения, — это, в частности, реакционные циклы, в основе которых лежат химические реакции с участием катализатора. В простейшем варианте они представляют собой трехчленные реакционные циклы (субстрат-фермент-продукт), более сложный цикл такого рода — цикл Кребса, осуществляющий перенос кислорода (дыхание). Интермедианты следующего по сложности — каталитического цикла — сами представляют собой катализаторы для одной из последующих реакций цикла, так что в целом каталитический цикл становится автокаталитическим. Если такие циклы объединяются в систему так же, как реакционные циклы объединяются в каталитический, то есть посредством циклических взаимоотношений, то возникает каталитический гиперцикл Манфреда Эйгена (между прочим, Владимир Щербак одно время работал у Эйгена, который проявил живой интерес к его работе, но не взялся ее комментировать). При этом компоненты такого гиперцикла катализируют продукцию следующего интермедианта, а также собственное воспроизведение из богатого энергией субстрата. Гиперцикл является той сложной системой, о какой говорил фон Нейман. Он представляет собой результат интеграции самостоятельных исамовоспроизводящихся единиц, каждая из которых выигрывает от этого объединения, поскольку пользуется преимуществами других. В свою очередь, это приводит к выигрышу данного гиперцикла в конкуренции с любой такой же системой другого состава. При этом часть информации, содержащаяся в системе, модифицируется за счет флуктуаций, в результате чего она получает возможность эволюционировать в сторону дальнейшего усложнения, сохраняя при этом определенное количество информации, передающейся следующему поколению.

В далеких от равновесия открытых системах, основанных на непрерывно работающих гиперциклах, структурную стабильность обеспечивает движение компонентов, осуществляемое за счет внешних источников энергии. Живые системы полностью соответствуют такому описанию, поскольку являются открытыми, далекими от равновесия и динамически стабильными. Работа компонентов системы приводит к непрерывной потере (диссипации) энергии, восполняемой из упомянутых источников. Структуры, которые формируются и сохраняются подобным образом, Пригожин назвал диссипативными. Автор не видит необходимости углубляться здесь в термодинамику жизни: о пригожинских диссипативных структурах, свойства которых соотносятсясо свойствам живых систем, написано очень много, и они не являются предметом наших рассуждений. Сложность таких систем, обеспеченная интеграцией их компонентов (или агентов, как называет их наука о сложных системах — нелинейная динамика), обеспечивает их высокую конкурентоспособность и дальнейшую эволюцию. Победа в конкуренции приводит к относительной стабилизации системы, но ее открытость и динамический характер ее равновесия с окружающим миром все равно заставляют ее эволюционировать в сторону усложнения. Дело в том, что основное свойство сложных систем это их нелинейность, то есть принципиальная несводимость к простой сумме своих частей. К нелинейной системе неприменим принцип суперпозиции: ее нельзя разложить на независимые составляющие, из описания которых легко собирается исходная система.Сложные системы состоят из множества агентов, которые действуют исходя из частичной информации о системе в целом и о ее окружении; более того, эти агенты в состоянии изменять правила своего поведения на основе такой частичной информации; сложные системы способны извлекать скрытые закономерности из неполной информации и изменять свое поведение на основе новой поступающей информации. Вот почему поведение сложной системы принципиально непредсказуемо. Движение ее агентов определяется выборочными причинами, но не их исчерпывающим комплексом. Следствием такого поведения становится эмерджентность системы, то есть ее способность самостоятельно генерировать неожиданное поведение и свойства, которые невозможно предсказать на основе знания свойств их частей, рассматриваемых изолированно.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле."

Книги похожие на "КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Феликс Филатов

Феликс Филатов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле."

Отзывы читателей о книге "КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.