» » » » Александр Прищепенко - Огонь! Об оружии и боеприпасах


Авторские права

Александр Прищепенко - Огонь! Об оружии и боеприпасах

Здесь можно скачать бесплатно "Александр Прищепенко - Огонь! Об оружии и боеприпасах" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары, издательство Моркнига, год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Прищепенко - Огонь! Об оружии и боеприпасах
Рейтинг:
Название:
Огонь! Об оружии и боеприпасах
Издательство:
Моркнига
Год:
2009
ISBN:
978-5-903080-62-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Огонь! Об оружии и боеприпасах"

Описание и краткое содержание "Огонь! Об оружии и боеприпасах" читать бесплатно онлайн.



В книге, написанной специалистом в области боеприпасов читатель найдет экскурсы в газовую динамику, физику деления ядер и разделения изотопов, электронику больших токов и напряжений, магнитную кумуляцию, электродинамику, и даже — и историю боевого применения различного оружия.

Издание обильно иллюстрировано: чтобы убедиться в этом, достаточно раскрыть его на любой странице и полистать. Среди иллюстраций много оригинальных, которые были получены автором при проведении опытов (некоторые, наиболее безопасные из них, он рекомендует провести и читателю). Если дать себе труд прочитать несколько абзацев, то можно убедиться и в том, что книга написана живым языком. Она рассчитана на тех, кто интересуется физикой — как получивших высшее образование в этой области, так и тех, кто знает предмет в пределах школьного курса.






…При испытаниях лабораторных макетов ВМГЧ не было смысла возиться с автономной системой их энергообеспечения, но. когда была продемонстрирована эффективность возможного боевого применения излучателей этого класса, такая задача стала актуальной.

Рис. 4.43. Система постоянных магнитов, предназначенная для создания начального поля в ВМГЧ. Ориентация элементов системы такова, что внутри спирали поля элементов складываются, а вне спирали — вычитаются

Как нетрудно видеть из осциллограммы 4.38а, ВМГЧ и сам мог «раскачивать» электрические колебания, поэтому напрашивалось решение: применить для создания, пусть и очень небольшого, начального поля в обмотке излюбленные постоянные магниты (рис. 4.43)! Их расположили так, что внутри обмотки ВМГЧ поля суммировались, а вне обмотки — вычитались. Но и такие ухищрения не позволили повысить энергию начального поля в СВМГ до величин, превышающих джоуль — слишком мала остаточная магнитная индукция даже в лучших материалах, таких как «железо — неодим-бор». А это означало, что ВМГЧ с такой системой создания начального поля будет весьма «длинным» — объем, отведенный под боеприпас, будет использоваться нерационально. Но вспомнили: есть уже отработанное для ЦУВИ устройство, способное дать энергию в десятки тысяч раз большую, чем постоянные магниты. Чтобы использовать такой ценный задел, излучатель необходимо было доработать.

Имплозивный магнитный генератор частоты (ИМГЧ) существенно отличался от ЦУВИ лишь детонационной разводкой (обратите внимание — она формирует при срабатывании не цилиндрическую, а тороидальную детонационную волну) да конструкцией излучателя (рис. 4.44): вместо рабочего тела из монокристалла, внутри соленоида I, которому после подрыва кольцевого заряда взрывчатки 2 суждено стать лайнером, располагается катушка 3, а внутри нее — конденсаторы 4 (последовательно соединенные). Лайнер, сжимая магнитное поле, «втискивает» его внутрь катушки при ударе, создав своего рода взрывной трансформатор, а затем последовательно закорачивает витки катушки (точки контакта при этом двигаются к обеим ее концам), генерируя РЧЭМИ «быстрых» гармоник точно также, как это происходит в ВМГЧ. Время генерации РЧЭМИ для такой схемы оценивалось в пару микросекунд, а начальная энергия ограничивалась только электропрочностью изоляции катушки. Главное же — зависимость выхода РЧЭМИ от величины начальной энергии, «закачиваемой» в катушку близка к линейной и нестабильность работы ФМГ и ВМГ не приводит к фатальным последствиям: выход РЧЭМИ по этой причине меняется незначительно. Но «скакнула» вверх и стоимость изделия.

Рис. 4.44. Схема имплозивного магнитного генератора частоты (ИМГЧ)

Работа с мертвой точки сдвинулась только тогда, когда отказались от паллиативных решений, сделав все «по-новому».

…Электрические заряды в диэлектриках связаны и не могут двигаться свободно, как в металлах. Диэлектрики способны накапливать энергию: если «закоротить» заряженный конденсатор (удалив, таким образом, свободные заряды с металлических обкладок), а затем снять закоротку, спустя небольшое время конденсатор снова окажется частично заряжен (возможно, некоторые читатели убедились в этом, работая с установкой «водяной кумуляции») Причина в том, что изолятор при зарядке был поляризован внешним полем. При «закорачивании» сразу исчезло поле, а направленная поляризация частично сохранилась. Возвращение поляризации к равновесному значению вызывает протекание тока смещения, вновь заряжающего конденсатор.

Структурные элементы некоторых видов диэлектриков (сегнетоэлектриков, пьезоэлектриков) обладают собственными электрическими дипольными моментами. Сегнетоэлектрики неограниченно долго сохраняют остаточную поляризацию и деполяризуются лишь при нагревании до точки Кюри (для большинства из них — около 100 °C). Эффективно нагревает любое вещество ударная волна, но сегнетоэлектрики более «капризны», чем ферромагнетики: слишком мощная волна может индуцировать в них столь сильное поле, что возникнет пробой и ток смещения не будет заряжать металлические обкладки, между которыми расположено рабочее тело (РТ). Но пусть все обошлось без пробоя, тогда пьезоэлемент — такой же, как в зажигалке, но значительно больший по размерам — зарядит конденсатор генератора частоты.

Рис. 4.45. Витковый генератор частоты (ВГЧ) и его схема

Как и в ядерных боеприпасах, в крупнокалиберных ЭМБП целесообразно размещать несколько небольших излучателей, рассеиваемых перед групповым подрывом — тогда цели поражаются на большей площади. Для кассетных элементов был разработан витковый генератор частоты (ВГЧ, рис. 4.45), обмотка которого состоит из одного, и то неполного витка 1. Короткая труба 2 смещена в сторону пьезоэлементов 3, поэтому сначала она, расширяясь под действием взрыва, «выбивает» из них ток, заряжая конденсатор 4, а уж затем замыкает контур, генерирующий излучение. Как и в случае других генераторов частоты, для ВГЧ была создана полуэмпирическая модель, в значительной степени опирающаяся на результаты токовых измерений (рис. 4.46).

Рис. 4.46. Осциллограммы производной тока: а) в ВГЧ, электроды которого соединены с конденсатором; б) в том же устройстве, электроды которого соединены «закороткой» из провода

В 125 мм реактивной гранате (рис. 4.47) размещаются три кассетных элемента. При срабатывании боевой части они рассеиваются, что позволяет рационально формировать поля излучения повысить стабильность эффектов поражения, воздействуя на цель с нескольких разных направлений — тогда более вероятны совпадения лепестков на наиболее «чувствительных» для цели частотах. Кроме того, время генерации РЧЭМИ не превышает для ВГЧ микросекунды, и взрывом можно образовать вокруг источника облако очень плотных газов, что позволяет избежать пробоя (важная особенность, о которой подробно — позже).

Рис. 4.47. 125-миллиметровая реактивная граната с кассетной боевой частью на основе витковых генераторов частоты

Опять же нетрудно уловить тенденцию: каждый из последующих образцов генераторов частоты формировал поток РЧЭМИ все меньшей длительности (что, правда, не означало уменьшения интегральной энергии). Но для военного применения длительность импульса РЧЭМИ, формируемого даже ВГЧ — избыточна…

В общем-то, это и так должно быть ясно: чем короче токовый импульс, наведенный РЧЭМИ, тем меньше теплоотвод or того элемента, в котором реализуется энергия этого импульса, но оценить численные значения стоит. Пусть весь тепловой эффект сосредоточен в области р-n перехода (размеры которого — около микрона). Тогда импульс бесконечно малой длительности (при которой повышение температуры кремния на расстоянии, сравнимом с микроном, пренебрежимо), нагревающий до данной температуры пластину данной площади, должен иметь определенную энергию, которая при дальнейших расчетах принималась равной единице (кпд равен 100 %). Если же энергия выделяется на той же глубине, но в течение большего времени, (рис. 4.48) существенным становится теплоотвод и для достижения той же температуры нагревать придется уже не микронный слой р-п перехода, а и близлежащие слои кремния, что ведет к снижению кпд. В результате расчетов была получена зависимость кпд различных временных режимов облучения, из которой следовало, что режимы более длительные, чем единицы микросекунд, не являются рациональными, энергосберегающими (рис. 4.49). Существует, правда, и другой механизм выхода р-n перехода из строя (пробой), но он реализуется только при наносекундных длительностях облучения, характерных для ударно-волновых излучателей, а не для генераторов частоты. Таким образом, режим излучения генераторов частоты нельзя признать эффективным с точки зрения нанесения поражений электронике противника, но зато устройства этого класса значительно проще и надежнее других и по параметру «эффективность/ стоимость» они вполне конкурентоспособны.

 Рис. 4.48. Распределение температур в кремнии при различных режимах тепловыделения в слое микронной толщины (длительность тепловыделения указана)

Рис. 4.49. Сравнительные эффективности различных временных режимов облучения

…Опять попросили о помощи друзья и снова святое это дело принесло богатый урожай. По просьбе разработчиков противотанковых средств из филиала НИИ «Базальт», решили проверить концепцию противотанкового гранатомета нового поколения.

На полигоне Главного автобронетанкового управления стоял один из не часто встречающихся (пока) танков (рис. 4.50), оснащенный системой активной защиты (САЗ).

САЗ — миниатюрный комплекс ПВО танка. Радиолокатор миллиметрового диапазона контролирует пространство впереди боевой машины, летящие к танку предметы селектируются и навстречу тем, которые представляют опасность — выстреливаются осколочные боеприпасы. Эффективность САЗ по таким целям, как реактивные гранаты или противотанковые управляемые ракеты близка к абсолютной: в моем присутствии были расстреляны несколько гранат, подлетавших к танку с разных курсовых углов. Для «Базальта» работа с ЭМБП была поиском концепции гранатомета способного преодолеть активную защиту танка. Главным требованием к ЭМБП — вспомогательному боеприпасу — была миниатюрность: он не должен был занять весь объем одноразового гранатомета, поскольку, кроме преодоления САЗ, надо было, выстрелом другой гранаты из того же гранатомета еще и пробить танковую броню. Поэтому список кандидатов был короток: испытанный ВМГЧ малого диаметра, да пара «новичков».


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Огонь! Об оружии и боеприпасах"

Книги похожие на "Огонь! Об оружии и боеприпасах" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Прищепенко

Александр Прищепенко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Прищепенко - Огонь! Об оружии и боеприпасах"

Отзывы читателей о книге "Огонь! Об оружии и боеприпасах", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.