Александр Прищепенко - Огонь! Об оружии и боеприпасах

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Огонь! Об оружии и боеприпасах"
Описание и краткое содержание "Огонь! Об оружии и боеприпасах" читать бесплатно онлайн.
В книге, написанной специалистом в области боеприпасов читатель найдет экскурсы в газовую динамику, физику деления ядер и разделения изотопов, электронику больших токов и напряжений, магнитную кумуляцию, электродинамику, и даже — и историю боевого применения различного оружия.
Издание обильно иллюстрировано: чтобы убедиться в этом, достаточно раскрыть его на любой странице и полистать. Среди иллюстраций много оригинальных, которые были получены автором при проведении опытов (некоторые, наиболее безопасные из них, он рекомендует провести и читателю). Если дать себе труд прочитать несколько абзацев, то можно убедиться и в том, что книга написана живым языком. Она рассчитана на тех, кто интересуется физикой — как получивших высшее образование в этой области, так и тех, кто знает предмет в пределах школьного курса.
Рис. 4.49. Сравнительные эффективности различных временных режимов облучения
…Опять попросили о помощи друзья и снова святое это дело принесло богатый урожай. По просьбе разработчиков противотанковых средств из филиала НИИ «Базальт», решили проверить концепцию противотанкового гранатомета нового поколения.
На полигоне Главного автобронетанкового управления стоял один из не часто встречающихся (пока) танков (рис. 4.50), оснащенный системой активной защиты (САЗ).
САЗ — миниатюрный комплекс ПВО танка. Радиолокатор миллиметрового диапазона контролирует пространство впереди боевой машины, летящие к танку предметы селектируются и навстречу тем, которые представляют опасность — выстреливаются осколочные боеприпасы. Эффективность САЗ по таким целям, как реактивные гранаты или противотанковые управляемые ракеты близка к абсолютной: в моем присутствии были расстреляны несколько гранат, подлетавших к танку с разных курсовых углов. Для «Базальта» работа с ЭМБП была поиском концепции гранатомета способного преодолеть активную защиту танка. Главным требованием к ЭМБП — вспомогательному боеприпасу — была миниатюрность: он не должен был занять весь объем одноразового гранатомета, поскольку, кроме преодоления САЗ, надо было, выстрелом другой гранаты из того же гранатомета еще и пробить танковую броню. Поэтому список кандидатов был короток: испытанный ВМГЧ малого диаметра, да пара «новичков».
Рис. 4.50. Система активной защиты (САЗ) танка…Идея, положенная в основу ферромагнитный генератор частоты (ФМГЧ, рис. 4.51), состояла в прямом преобразовании содержащейся в ферромагнетике энергии в энергию РЧЭМИ.
Рис. 4.51. Общий вид и схема ферромагнитного генератора частоты (ФМГЧ)
Мощная ударная волна нагревает ферромагнетик до температуры, превышающей точку Кюри. Освобожденное волной поле наводит ЭДС в обмотке 1, окружающей магнит 2, подобно тому, как это имеет место в ФМГ. Но к обмотке подключен конденсатор 3 и колебания в высокодобротном контуре приводят к смене полярности тока, направление поля внутри магнита периодически меняется и тогда состояние вещества за фронтом ударной волны становится существенно неравновесным, что приводит к излучению энергии. Таким образом, чередуются циклы «подкачки» энергии в контур и ее рассеяния. Но излучение может и не «выйти», а превратиться в бесполезное тепло, если проводимость ферромагнетика высока, как у пластин электротехнического железа в ФМГ. Поэтому в ФМГЧ рабочим телом служит не железо, а магниты, изготовленные по «порошковой» технологии, такие как FeNdB — они проводят плохо и «выпускают» поле из примерно сантиметрового слоя. Поделив размер деполяризуемого структурного элемента (микроны) на скорость ударной волны (5 км/с), получим грубую оценку характерного времени элементарного акта излучения, а значит, и длины волны — дециметр. На самом же деле, спектр излучения очень сложен: он меняется с каждой последующей «излучательной» полуволной (рис. 4.52). Конечно, ФМГЧ не может выдать больше того, что «имеет»: ударная волна служит лишь спусковым механизмом, а в излучение преобразуется небольшая часть содержащейся в постоянном магните энергии. Мощность и энергия РЧЭМИ, генерируемого ФМГЧ — почти на три порядка меньше, чем у источников с кумуляцией магнитного поля[47].
Рис. 4.51. Спектр излучения ФМГЧПамять читателей, наверняка верещит: «Про «точку Кюри и 100 градусов» — уже было…» Правильно, в строении постоянных магнитов и пьезоэлектриков есть много общего и грубой методической ошибкой было бы не «допустить к соревнованиям» и аналог ФМГЧ — пьезоэлектрический генератор частоты (ПЭГЧ). В таком генераторе (рис. 4.53) заряд взрывчатого вещества (ВВ) 1 состоит из двух элементов с разными скоростями детонации (у внутреннего конуса она меньше), чтобы обеспечить плоский фронт детонационной волны. Достигнув буфера 2, детонация формирует в нем ударную волну (УВ), которая, в несколько раз ослабившись, переходит из буфера в рабочее тело (РТ) 3 из сегнетоэлектрика, вызывая нагрев вещества РТ до температуры, превышающей точку Кюри и переход его в параэлектрическое состояние. Структурные элементы разрушаются и направленная поляризация вещества исчезает, что вызывает протекание тока деполяризации. Этот ток заряжает последовательно соединенные конденсаторы: образованный металлизованными поверхностями 4 на РТ и обычный 5, подсоединенный для получения нужной частоты колебаний в контуре. К другой обкладке РТ подключен соленоид 6, поэтому через промежуток времени, определяемый емкостью и индуктивностью контура, ток, а значит, и поле в РТ меняют полярность (рис. 4.54). Полуволны тока одной полярности сравнительно велики (происходит «подкачка» энергии в контур за счет деполяризации), а другой — значительно меньше из-за отбора энергии, в том числе и на излучение.
Рис. 4.53. Схема пьезоэлектрического генератора частоты Рис. 4.54. Осциллограмма тока в пьезоэлектрическом генераторе частоты. Положительные полуволны тока сравнительно велики (происходит «подкачка» энергии в контур за счет деполяризации), а отрицательные- значительно меньше из-за отбора энергии, в том числе и на излучение. Взрыв используется лишь как спусковой механизм, но его энергия па пять порядков превышает заключенную в веществе рабочего телаЗадания военных на разработку ФМГЧ и ПЭГЧ не было, но не покидало предчувствие, что эта идея не пропадет всуе. Как ПЭГЧ, так и ФМГЧ, представляли излучатели РЧЭМИ, мощности которого было достаточно только для создания перегрузок в электронных цепях целей, да и то кратковременных (сотни миллисекунд). Эффекты определялись незначительной энергией, которая содержалась в веществах рабочих тел. Но для временного ослепления САЗ хватило и этого…
Срабатывание всех без исключения типов излучателей в тот момент, когда решался успех перехвата — обеспечило прорыв САЗ (рис. 4.55). Разработчики защиты пытались (правда, довольно вяло) оспорить результаты, но все, чего они добились, был переход к опытам с боевой стрельбой и здесь спорить стало трудно: САЗ перехватила все летящие на танк гранаты в отсутствие воздействия РЧЭМИ, но «пропустила» все гранаты, подлет которых сопровождался подрывом макетов ЭМБП.
Рис. 4.55. Пример эффекта временного ослепления автоматической миллиметровой РЛС наведения системы активной защиты танка при перехвате ракеты. Верхняя осциллограмма — нормальный сигнал от блока определения дальности до цели. Нижняя осциллограмма — после разрыва 30-мм ЭМБП в нескольких метрах от Р/1С под углом 160° по отношению к оси антенны. Система потеряла способность оценивать расстояние до цели, пуск и перехват не состоялись. Момент взрыва ЭМБП показан стрелкойЭто был очень важный результат. На демонстрацию были приглашены В. Базилевич (один из главных конструкторов «Базальта») и В. Житников (заместитель начальника управления ГРАУ). ЭМБП не подвели и на показе, обеспечив прорыв абсолютно всех гранат, подлетавших к танку с самых разных курсовых углов, в том числе — при разрыве ЭМБП на корме танка (этого, вообще-го, не требовалось). Тем вечером запасам спирта всех трех команд испытателей пришел конец. Причины для ликования, действительно, были.
Во-первых, ФМГЧ и ПЭГЧ идеально вписывались в те габариты, которые «Базальт» мог выделить в гранатомете под вспомогательную гранату. Габариты излучателей можно было и еще уменьшить, но это не имело смысла, потому что их диаметры и так были меньшими, чем у подходящих по характеристикам взрывателей. Во-вторых, для вспомогательной гранаты требовался контактный подрыв, который мог обеспечить производившийся с 50-х годов, отработанный и надежный взрыватель М-6 к минометным боеприпасам. В-третьих, перечень целей для нового оружия исчерпывался танками с САЗ, и эффективность ЭМБП при стрельбе по такой цели была продемонстрирована абсолютная.
В «пожарном» порядке была разработана малокалиберная (42 мм) реактивная граната «Атропус» (рис. 4.56) и два варианта боевых частей к ней: на основе ФМГЧ и ПЭГЧ. ВМГЧ «отсеяли», поскольку он значительно сложнее и дороже их в производстве. Двигатель к «Атропусу» взяли от другой, уже находящейся на вооружении ракеты.
Рис. 4.56. 42 мм ракета «Атропус», оснащенная электромагнитной боевой частью Рис. 4.57. Концепция гранатомета-«двустволки» для поражения танков, оснащенных системой активной защитыКонцепция нового гранатомета просматривалась такая (рис. 4.57).
Помимо малокалиберного ствола с ЭМБП, ручной противотанковый гранатомет имеет еще один ствол (большего калибра) со второй — кумулятивной — гранатой.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Огонь! Об оружии и боеприпасах"
Книги похожие на "Огонь! Об оружии и боеприпасах" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Прищепенко - Огонь! Об оружии и боеприпасах"
Отзывы читателей о книге "Огонь! Об оружии и боеприпасах", комментарии и мнения людей о произведении.