» » » » Роджер Пенроуз - Тени разума. В поисках науки о сознании


Авторские права

Роджер Пенроуз - Тени разума. В поисках науки о сознании

Здесь можно скачать бесплатно "Роджер Пенроуз - Тени разума. В поисках науки о сознании" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Институт компьютерных исследований. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роджер Пенроуз - Тени разума. В поисках науки о сознании
Рейтинг:
Название:
Тени разума. В поисках науки о сознании
Издательство:
Институт компьютерных исследований
Жанр:
Год:
неизвестен
ISBN:
5-93972-457-4, 0-19-510646-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тени разума. В поисках науки о сознании"

Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.



Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.






В квантовой механике имеется стандартная процедура для исследования систем из двух и более независимых компонентов. Эта процедура понадобится нам, в частности, при рассмотрении с квантовой точки зрения (которое мы планируем дать в §5.18) системы, состоящей из двух далеко разнесенных в пространстве частиц со спином 3/2 — тех самых частиц, которые «Квинтэссенциальные Товары» поместили в магические додекаэдры (см. §5.3). Необходима такая процедура и для квантовомеханического описания детектора в момент сцепления его состояния с квантовым состоянием регистрируемой частицы.

Рассмотрим для начала систему, состоящую всего из двух независимых (невзаимодействующих) компонентов. Допустим, что каждый из этих компонентов (в отсутствие другого) описывается своим вектором состояния — скажем, |α〉 и |β〉. Как описать всю систему, в которой присутствуют оба компонента? Обычная процедура заключается в составлении так называемого тензорного (или внешнего) произведения этих векторов, которое записывается следующим образом:

|α〉|β〉.

Мы можем рассматривать это произведение как стандартный квантовомеханический способ представления обыкновенного логического «И» — в том смысле, что такая система объединяет в себе в некоторый момент времени обе независимые квантовые системы, представленные, соответственно, векторами состояния |α〉 и |β〉. (Например, |α〉 может представлять электрон, находящийся в точке A, а |β〉 — атом водорода в некоторой отдаленной точке B. Тогда состояние, в котором электрон находится в точке A, а атом водорода — в точке B, будет представлено произведением |α〉|β〉.) Величина |α〉|β〉 представляет одно квантовое состояние — мы вполне можем обозначить его одним вектором состояния, скажем, |х), и, не нарушив ни одного закона, записать

|χ〉 = |α〉|β〉.

Следует особо подчеркнуть, что это понятие «И» не имеет ничего общего с квантовой линейной суперпозицией, которая записывается как сумма векторов состояний |α〉 + |β〉 или, в общем случае, z|α〉 + w|β〉, где z и w — комплексные весовые коэффициенты. Например, если |α〉 и |β〉 — возможные состояния одного фотона (соответствующие, скажем, его расположению в различных точках A и B), то запись |α〉 + |β〉 также представляет возможное состояние того же самого фотона, при котором он замирает в нерешительности где-то между A и B в соответствии с маловразумительными предписаниями квантовой теории, — одного фотона, заметим, никак не двух. Состояние пары фотонов, при котором один находится в точке A, а другой — в точке B, будет представлено уже вектором |α〉|β〉.

Тензорное произведение подчиняется тем же алгебраическим правилам, каким, по нашим представлениям, и должно подчиняться любое уважающее себя произведение:

(z|α〉)|β〉 = z(|α〉|β〉) = |α〉(z|β〉),

(|α〉 + |γ〉)|β〉 = |α〉|β〉 + |γ〉|β〉,

|α〉(|β〉 + |γ〉) = |α〉|β〉 + |α〉|γ〉,

(|α〉|β〉)|γ〉 = |α〉(|β〉|γ〉).

разве что равенство |α〉|β〉 = |β〉|α〉, строго говоря, некорректно. Это, впрочем, отнюдь не означает, что интерпретация понятия «И» в квантовомеханическом контексте предполагает, что совокупная система «|α〉 и |β〉» физически чем-то отличается от совокупной системы «|β〉 и |α〉». Мы попробуем обойти эту проблему посредством несколько более глубокого погружения в таинства действительного поведения Вселенной на квантовом уровне. В дальнейшем под записью |α〉|β〉 мы будем подразумевать не то, что математики называют «тензорным произведением», а скорее то, что в математической физике (с недавних пор) называется грассмановым произведением. Тогда к записанным выше можно добавить еще одно правило:

|α〉|β〉 = ±|β〉|α〉.

Знак «минус» появляется здесь лишь в том случае, когда оба состояния (|α〉 и |β〉) «охватывают» нечетное количество частиц с нецелочисленным спином. (Такие частицы называются фермионами, а их спин принимает значения 1/2, 3/2, 5/2, 7/2, …. Частицы со спином 0, 1, 2, 3, … называются бозонами и на знак в приведенном выше выражении никак не влияют.) Впрочем, на данном этапе читателю нет необходимости вникать во все эти формальности. До тех пор, пока нас занимает лишь скрывающееся за описанием физическое состояние, «|α〉 и |β〉» ничем не отличается от «|β〉 и |α〉».

Для описания состояний с тремя или большим количеством независимых компонентов мы просто повторяем процедуру. Так, если обозначить индивидуальные состояния этих трех компонентов через |α〉, |β〉 и I7), то состояние, в котором все три компонента наличествуют одновременно, описывается произведением

|α〉|β〉|γ〉,

причем грассманово произведение (|α〉|β〉)|γ〉 (или, что эквивалентно, |α〉(|β〉|γ〉)) описывает то же самое состояние. Аналогичным образом рассматриваются и системы с четырьмя или более независимыми компонентами.

Следует упомянуть и об одном важном свойстве шрёдингеровой эволюции U: эволюция совокупной системы |α〉|β〉 (где |α〉 и |β〉 никак друг с другом не взаимодействуют) есть не что иное, как совокупность эволюции индивидуальных систем. Так, если по истечении некоторого времени t система |α〉 эволюционирует (индивидуально) в систему |α'〉, а система |β〉 эволюционирует (индивидуально) в систему |β'〉, то совокупная система |α〉|β〉 за то же время t эволюционирует в систему |α'〉|β'〉. Аналогично, если у нас имеется три невзаимодействующих компонента |α〉, |β〉 и |γ〉, эволюционирующих, соответственно, в |α'〉, |β'〉 и |γ'〉 то совокупная система |α〉|β〉|γ〉 посредством той же эволюции переходит в состояние |α'〉|β'〉|γ'〉. То же верно для четырех и более компонент.

Отметим, что свойство это очень похоже на свойство линейности эволюции U (см. §5.7), согласно которому результат эволюции суперпозиции состояний в точности совпадает с суперпозицией результатов эволюции отдельных состояний. Состояние |α〉 + |β〉, например, эволюционируете |α'〉 + |β'〉. Тем не менее, речь в обоих случаях идет о совершенно разных вещах, и очень важно об этой разнице не забывать. Нет ничего удивительного в том, что система, составленная из невзаимодействующих независимых компонентов, эволюционирует — как целое — так, словно ни один из ее отдельных компонентов понятия не имеет о присутствии в системе остальных. Независимость компонентов (т.е. полное отсутствие каких бы то ни было взаимодействий между ними) в данном случае — существенное условие, иначе свойство не «работает». Свойство линейности же оказывается поистине неожиданным. Получается, что под действием U системы-суперпозиции состояний эволюционируют как набор отдельных, полностью изолированных друг от друга состояний независимо от того, изолированы эти состояния в действительности или между ними существуют какие-то взаимодействия. Одного этого достаточно, чтобы усомниться в абсолютной справедливости свойства линейности. И все же эволюция U линейна (и тому есть многочисленные подтверждения), но лишь в отношении феноменов, целиком и полностью ограниченных квантовым уровнем. Нарушение же линейности происходит, по всей видимости, исключительно под действием процедуры R. К этому вопросу мы еще вернемся.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тени разума. В поисках науки о сознании"

Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роджер Пенроуз

Роджер Пенроуз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"

Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.