Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
С ортогональностью произведений состояний (в том виде, в каком я определил эти произведения выше) дела обстоят не так просто, как хотелось бы. Допустим, у нас имеется два ортогональных состояния |α〉 и |β〉; тогда мы вправе ожидать, что состояния |ψ〉|α〉 и |ψ〉|β〉 также будут ортогональными, причем при любом |ψ〉. Пусть, например, |α〉 и |β〉 — возможные альтернативные состояния фотона, где |α〉 — состояние фотона, зарегистрированного неким фотоэлементом, а ортогональное |α〉 состояние |β〉 — предполагаемое состояние фотона в случае, когда фотоэлемент не регистрирует ничего (нулевое измерение). Можно представить себе, что наш фотон является компонентом некоей совокупной системы — просто добавим к нему еще какой-нибудь объект (например, другой фотон, скажем, где-нибудь на Луне) и обозначим состояние этого другого объекта через |ψ〉. Таким образом, для нашей совокупной системы возможны два альтернативных состояния — |ψ〉|α〉 и |ψ〉|β〉. Простое добавление состояния |ψ〉 в имеющееся описание не должно, разумеется, оказать никакого влияния на ортогональность двух первоначальных состояний. В самом деле, если говорить об определении произведения состояний в терминах обычного «тензорного произведения» (или необычного — в данном случае, грассманова произведения, а точнее, некоторой его модификации, используемой в наших рассуждениях), то так оно и есть, и из ортогональности состояний |α〉 и |β〉 действительно следует ортогональность |ψ〉|α〉 и |ψ〉|β〉.
Как бы то ни было, пути, которыми, похоже (согласно
последним данным квантовой теории), предпочитает следовать Вселенная, далеко не столь прямолинейны. Если бы состояние |ψ〉 можно было счесть полностью независимым и от |α〉, и от |β〉, то тогда его присутствие и в самом деле ничего бы не меняло. Однако формально полной независимости здесь быть не может, и состояние даже пребывающего на Луне фотона оказывает самое непосредственное воздействие на состояние фотона, регистрируемого нашим фотоэлементом[40]. (С этими формальностями связано, в частности, то, что под обозначением «|ψ〉|α〉» мы подразумеваем произведение грассманова типа — если использовать более привычные термины, то речь тут идет о так называемой «статистике Бозе» (описание состояний фотонов и прочих бозонов) или о «статистике Ферми» (описание состояний фермионов — электронов, протонов и т.д.), см. НРК, с. 277, 278 и, скажем, [94].) Если бы перед нами стояла задача получить абсолютно точный с точки зрения теории результат, то рассмотрение состояния одного-единственного фотона потребовало бы учета состояний всех фотонов во Вселенной. Впрочем, необходимости в этом (к счастью) нет — и без такого учета точность получаемых результатов хоть и не абсолютна, но все же чрезвычайно высока. Если состояния |α〉 и |β〉 ортогональны, то можно с очень высокой степенью точности предположить, что ортогональными будут и состояния |ψ〉|α〉 и |ψ〉|β〉 (даже если это произведения грассманова типа), где |ψ〉 — любое состояние, не имеющее очевидного отношения к рассматриваемой задаче (каковая задача непосредственно касается лишь ортогональных состояний |α〉 и |β〉). Так и предположим.
5.17. Квантовая сцепленность
Для того чтобы двигаться дальше, нам не обойтись без понимания квантовой физики ЭПР-эффектов — квантовомеханических Z-загадок, ярким представителем которых является представленная мною выше задача о магических додекаэдрах (см. §§5.3, 5.4). Кроме того, мы должны как-то разобраться с главной X-загадкой квантовой теории — парадоксальной взаимозависимостью между процессами эволюции U и редукции R, загадкой, порождающей проблему измерения, о которой мы поговорим в следующей главе. Следовательно, настала пора ввести очередную фундаментальную квантовую идею — понятие о сцепленных состояниях.
Начнем с того, что попытаемся выяснить, что включает в себя простой процесс измерения. Рассмотрим следующую ситуацию: фотон находится в суперпозиции, скажем, |α〉 + |β〉, где в состоянии |α〉 фотон активирует детектор, в состоянии же |β〉, ортогональном |α〉, фотон никакого воздействия на детектор не оказывает. (Похожий пример рассматривался в §5.8, когда на детектор, расположенный в точке G, падал фотон, пребывающий в состоянии —|F〉 - i|G〉. В состоянии |G〉 фотон активировал детектор, в состоянии |F〉 никакого воздействия на детектор не происходило.) Предположим далее, что детектору тоже можно сопоставить некое квантовое состояние, скажем, |Ψ〉. Вообще говоря, в квантовой теории это обычная практика. Лично мне не совсем ясно, какой может быть смысл в придании квантовомеханического описания объекту классического уровня, однако в дискуссиях на эту тему подобные вопросы, как правило, никого не занимают. Как бы то ни было, мы, думаю, можем согласиться с тем, что те элементы детектора, с которыми фотон сталкивается прежде всего, и в самом деле допускают рассмотрение согласно стандартным правилам квантовой теории. Поэтому, если у вас возникают какие-либо сомнения относительно правомерности применения этих правил ко всему детектору (как к целому), вы можете считать, что вектор состояния |Ψ〉 описывает поведение именно совокупности элементов квантового уровня (частиц, атомов, молекул), что принимают на себя, так сказать, первый удар.
В момент, непосредственно предшествующий столкновению фотона (или, точнее, |α〉-части волновой функции фотона) с детектором, физическое состояние системы объединяет в себе состояние детектора и состояние фотона, т.е. имеет вид |Ф)(|α〉 + |β〉), а нам известно, что
|Ψ〉(|α〉 + |β〉) = |Ψ〉|α〉 + |Ψ〉|β〉.
Таким образом, мы имеем дело с суперпозицией состояния |Ψ〉|α〉, описывающего детектор (элементы детектора) и приближающийся к нему фотон, и состояния |Ψ〉|β〉, описывающего детектор (элементы детектора) и фотон, находящийся где-то в другом месте. Предположим далее, что состояние |Ψ〉|α〉 (детектор с приближающимся к нему фотоном) переходит, согласно шрёдингеровой эволюции U, в некоторое новое состояние |ΨД〉 (детектор регистрирует результат ДА) — в силу возникающих при столкновении взаимодействий между фотоном и элементами детектора. Предположим также, что если фотон с детектором не сталкивается, то под действием U состояние детектора |Ψ〉 эволюционирует (индивидуально) в состояние |ΨН〉 (детектор регистрирует НЕТ), а состояние |β〉 — в состояние |β'〉. Тогда, согласно свойствам шрёдингеровой эволюции, рассмотренным в предыдущем параграфе, общее состояние системы принимает вид
|ΨД〉 + |ΨН〉|β'〉.
Перед нами типичный пример сцепленного состояния: термин «сцепленность» в данном случае отражает тот факт, что общее состояние системы невозможно записать просто в виде произведения состояния одной из ее подсистем (фотона) на состояние другой подсистемы (детектора). Более того, состояние |ΨД〉 и само, по всей вероятности, является сцепленным (по меньшей мере, с состояниями элементов собственного окружения), однако подтверждение этой сцепленности требует детального исследования соответствующих взаимодействий, не имеющих к теме нашего разговора никакого отношения.
Отметим, что состояния |Ψ〉|α〉 и |Ψ〉|β〉, суперпозицией которых представлено состояние совокупной системы непосредственно перед столкновением, (существенно) ортогональны — поскольку ортогональны состояния |α〉 и |β〉, а |Ψ〉 никак не зависит ни от того, ни от другого. Таким образом, ортогональными должны быть и состояния, в которые они эволюционируют под действием U, — |ΨД〉 и |ΨН〉|β'〉. (Эволюция U всегда сохраняет ортогональность.) Состояние |ΨД〉 может в дальнейшем эволюционировать в нечто, наблюдаемое на макроскопическом уровне, — например, в слышимый человеческим ухом щелчок, указывающий на то, что фотон действительно был зарегистрирован. Если же никакого щелчка мы не услышали, то это надо понимать так, что система находится в ортогональном альтернативном состоянии |ΨН〉|β'〉 (или только что в него «перескочила»). Одна лишь контрфактуальная возможность — щелчок мог прозвучать, но не прозвучал — вызывает «скачок» состояния из суперпозиции в состояние |ΨН〉|β'〉, причем новое состояние уже не является сцепленным. Его расцепило нулевое измерение.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.