» » » » Роджер Пенроуз - Тени разума. В поисках науки о сознании


Авторские права

Роджер Пенроуз - Тени разума. В поисках науки о сознании

Здесь можно скачать бесплатно "Роджер Пенроуз - Тени разума. В поисках науки о сознании" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Институт компьютерных исследований. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роджер Пенроуз - Тени разума. В поисках науки о сознании
Рейтинг:
Название:
Тени разума. В поисках науки о сознании
Издательство:
Институт компьютерных исследований
Жанр:
Год:
неизвестен
ISBN:
5-93972-457-4, 0-19-510646-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тени разума. В поисках науки о сознании"

Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.



Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.






Что же касается Тьюринга, то он, по-видимому, мистическую точку зрения не принял, будучи в то же время солидарен с Гёделем в том, что мозг, как и всякий другой физический объект, должен функционировать каким-либо вычислимым образом (вспомним о «тезисе Тьюринга», §1.6). Таким образом, Тьюрингу пришлось искать какой-то другой способ обойти затруднение в виде утверждения G. При этом особенно значимым ему показался тот факт, что математикам-людям свойственно делать ошибки; если мы хотим, чтобы наш компьютер стал подлинно разумным, следует позволить ему хоть иногда ошибаться{39};

«Иными словами, это означает, что если мы требуем от машины непогрешимости, то не стоит ожидать от нее еще и разумности. Существует несколько теорем, суть которых почти буквально сводится к вышеприведенному утверждению. Однако в этих теоремах ничего не говорится о степени разумности, которую нам может продемонстрировать машина, не претендующая на непогрешимость».

Под «теоремами» Тьюринг, вне всякого сомнения, подразумевает теорему Гёделя и другие аналогичные теоремы — такие, например, как его собственная, «вычислительная» версия теоремы Гёделя. То есть, по Тьюрингу, получается, что наиболее существенной способностью человеческого математического мышления является способность ошибаться, благодаря которой свойственное (предположительно) разуму неточно-алгоритмическое функционирование обеспечивает большую мощность, нежели возможно получить посредством каких угодно полностью обоснованных алгоритмических процедур. Исходя из этого допущения, Тьюринг предложил способ обойти ограничение, налагаемое следствиями из теоремы Гёделя: мыслительная деятельность математика подчиняется-таки некоему алгоритму, только не «непознаваемо обоснованному», а формально необоснованному. Таким образом, точка зрения Тьюринга приходит в полное согласие с утверждением G, а сам Тьюринг, по-видимому, присоединяется к сторонникам точки зрения A.

Завершая дискуссию, я хотел бы представить мои собственные причины усомниться в том, что «необоснованность» управляющего разумом математика алгоритма может послужить подлинным объяснением тому, что в этом самом разуме происходит. Как бы ни обстояло дело в действительности, в самой идее о том, что превосходство человеческого разума над точной машиной достигается за счет неточности разума, мне видится какое-то глубинное противоречие, особенно когда речь — как в нашем случае — идет о способности математика открывать неопровержимые математические истины, а не о его оригинальности или творческих способностях. Поразительно, что два великих мыслителя, какими, несомненно, являются Гёдель и Тьюринг, руководствуясь соображениями вроде утверждения G, пришли к выводам (пусть и различным), которые многие из нас склонны считать, скажем так, маловероятными. Кроме того, весьма интересно поразмыслить о том, к каким бы выводам они пришли, имей они шанс хоть сколько-нибудь всерьез предположить, что физический процесс может иногда оказаться в основе своей невычислимым — в соответствии с точкой зрения C, ради продвижения которой и была написана эта книга.

В последующих разделах (особенно, в §§3.2-3.22) я представлю вашему вниманию несколько детальных обоснований (некоторые из них довольно сложны, запутаны или специальны), целью которых является демонстрация неспособности вычислительных моделей A и B выступить в качестве вероятной основы для исследования феномена математического понимания. Если читатель не нуждается в подобном убеждении либо не склонен погружаться в детали, то я бы порекомендовал ему (или ей) все же начать чтение, а затем, когда уж совсем надоест, переходить сразу к итоговому воображаемому диалогу (§3.23). Если у вас затем появится желание вернуться к пропущенным рассуждениям, буду только рад, если же нет — забудьте о них и читайте дальше.

3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?

 Согласно выводу G, для того чтобы математическое понимание могло оказаться результатом выполнения некоего алгоритма, этот алгоритм должен быть необоснованным или непознаваемым, если же он сам по себе обоснован и познаваем, то о его обоснованности должно быть принципиально невозможно узнать наверняка (такой алгоритм мы называем непознаваемо обоснованным); кроме того, возможно, что различные математики «работают» на различных типах таких алгоритмов. Под «алгоритмом» здесь понимается просто какая-нибудь вычислительная процедура (см. §1.5), т.е. любой набор операций, который можно, в принципе, смоделировать на универсальном компьютере с неограниченным объемом памяти. (Как нам известно из обсуждения возражения Q8, §2.6, «неограниченность» объема памяти в данном идеализированном случае на результаты рассуждения никак не влияет.) Такое понятие алгоритма включает в себя нисходящие процедуры, восходящие самообучающиеся системы, а также различные их сочетания. Сюда, например, входят любые процедуры, которые можно реализовать с помощью искусственных нейронных сетей (см. §1.5). Этому определению отвечают и иные типы восходящих механизмов — например, так называемые «генетические алгоритмы», повышающие свою эффективность с помощью некоей встроенной процедуры, аналогичной дарвиновской эволюции (см. §3.11).

О специфике приложения аргументации, представляемой в настоящем разделе (равно как и доводов, выдвинутых в главе 2), к восходящим процедурам я еще буду говорить в §§3.9-3.22 (краткое изложение их можно найти в воображаемом диалоге, §3.23). Пока же, для большей ясности изложения, будем рассуждать, исходя из допущения, что в процессе участвует один-единственный тип алгоритмических процедур, а именно — нисходящие. Такую алгоритмическую процедуру можно относить как к отдельному математику, так и к математическому сообществу в целом. В комментариях к возражениям Q11 и Q12, §2.10, рассматривалось предположение о том, что разным людям могут быть свойственны различные обоснованные и известные алгоритмы, причем мы пришли к заключению, что такая возможность не влияет на результаты рассуждения сколько-нибудь значительным образом. Возможно также, что разные люди постигают истину посредством различных необоснованных и непознаваемых алгоритмов; к этому вопросу мы вернемся несколько позже (см. §3.7). А пока, повторюсь, будем считать, что в основе математического понимания лежит одна-единственная алгоритмическая процедура. Можно, кроме того, ограничить рассматриваемую область той частью математического понимания, которая отвечает за доказательство Π1-высказываний (т.е. определений тех операций машины Тьюринга, которые не завершаются; см. комментарий к возражению Q10). В дальнейшем вполне достаточно интерпретировать сочетание «математическое понимание» как раз в таком, ограниченном смысле (см. формулировку G**).

В зависимости от познаваемости предположительно 

лежащей в основе математического понимания алгоритмической процедуры F (будь то обоснованной или нет), следует четко выделять три совершенно различных случая. Процедура F может быть:

I сознательно познаваемой, причем познаваем также и тот факт, что именно эта алгоритмическая процедура ответственна за математическое понимание;

II сознательно познаваемой, однако тот факт, что математическое понимание основывается именно на этой алгоритмической процедуре, остается как неосознаваемым, так и непознаваемым;

III неосознаваемой и непознаваемой.

Рассмотрим сначала полностью сознательный случай I. Поскольку и сам алгоритм, и его роль являются познаваемыми, мы вполне можем счесть, что мы о них уже знаем. В самом деле, ничто не мешает нам вообразить, что все наши рассуждения имеют место уже после того, как мы получили в наше распоряжение соответствующее знание — ведь слово «познаваемый» как раз и подразумевает, что такое время, по крайней мере, в принципе, когда-нибудь да наступит. Итак, алгоритм F нам известен, при этом известна и его основополагающая роль в математическом понимании. Как мы уже видели (§2.9), такой алгоритм эффективно эквивалентен формальной системе F. Иными словами, получается, что математическое понимание — или хотя бы понимание математики каким-то отдельным математиком — эквивалентно выводимости в рамках некоторой формальной системы F. Если мы хотим сохранить хоть какую-то надежду удовлетворить выводу G, к которому нас столь неожиданно привели изложенные в предыдущей главе соображения, то придется предположить, что система F является необоснованной. Однако, как это ни странно, необоснованность в данном случае ситуацию ничуть не меняет, поскольку, в соответствии с I, известная формальная система F является действительно известной, то есть любой математик знает и, как следствие, верит, что именно эта система лежит в основе его (или ее) математического понимания. А такая вера автоматически влечет за собой веру (пусть и ошибочную) в обоснованность системы F. (Согласитесь, крайне неразумно выглядит точка зрения, в соответствии с которой математик позволяет себе не верить в самые фундаментальные положения собственной заведомо неопровержимой системы взглядов.) Независимо от того, является ли система F действительно обоснованной, вера в ее обоснованность уже содержит в себе веру в то, что утверждение G(F) (или, как вариант, Ω(F), см. §2.8) истинно. Однако, поскольку теперь мы полагаем (исходя из веры в справедливость теоремы Гёделя), что истинность утверждения G(F) в рамках системы F недоказуема, это противоречит предположению о том, что система F является основой всякого (существенного для рассматриваемого случая) математического понимания. (Это соображение одинаково справедливо как для отдельных математиков, так и для всего математического сообщества в целом; его можно применять индивидуально к любому из всевозможных алгоритмов, предположительно составляющих основу мыслительных процессов того или иного математика. Более того, согласно предварительной договоренности, для нас на данный момент важна применимость этого соображения лишь в той области математического понимания, которая имеет отношение к доказательству Π1-высказываний.) Итак, невозможно знать наверняка, что некий гипотетический известный необоснованный алгоритм F, предположительно лежащий в основе математического понимания, и в самом деле выполняет эту роль. Следовательно, случай I исключается, независимо от того, является система F обоснованной или нет. Если система F сама по себе познаваема, то следует рассмотреть возможность II, суть которой заключается в том, что система F все же может составлять основу математического понимания, однако узнать об этой ее роли мы не в состоянии. Остается в силе и возможность III: сама система F является как неосознаваемой, так и непознаваемой.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тени разума. В поисках науки о сознании"

Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роджер Пенроуз

Роджер Пенроуз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"

Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.