» » » » Роджер Пенроуз - Тени разума. В поисках науки о сознании


Авторские права

Роджер Пенроуз - Тени разума. В поисках науки о сознании

Здесь можно скачать бесплатно "Роджер Пенроуз - Тени разума. В поисках науки о сознании" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Институт компьютерных исследований. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роджер Пенроуз - Тени разума. В поисках науки о сознании
Рейтинг:
Название:
Тени разума. В поисках науки о сознании
Издательство:
Институт компьютерных исследований
Жанр:
Год:
неизвестен
ISBN:
5-93972-457-4, 0-19-510646-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тени разума. В поисках науки о сознании"

Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.



Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.






Наконец, в связи с возможной необоснованностью нашей гипотетической системы F, вернемся ненадолго к другим аспектам человеческой «неточности», о которых мы говорили выше (см. комментарии к возражениям Q12 и Q13). Прежде всего повторю: нас в данном случае интересуют не вдохновение, не гениальные догадки и не эвристические критерии, способные привести математика к великим открытиям, но лишь понимание и проникновение в суть, на фундаменте которых покоятся его неопровержимые убеждения в отношении математических истин. Эти убеждения могут оказаться всего-навсего результатом ознакомления с рассуждениями других математиков, и в этом случае о каких бы то ни было элементах математического открытия говорить, разумеется, не приходится. А вот когда мы нащупываем путь к какому-то подлинному открытию, и впрямь весьма важно дать размышлениям свободу, не ограничивая их изначально необходимостью в полной достоверности и точности (у меня сложилось впечатление, что именно это имел в виду Тьюринг в приведенной выше цитате, см. §3.1). Однако когда перед нами встает вопрос о принятии или отклонении тех или иных доводов в поддержку неопровержимой истинности выдвигаемого математического утверждения, необходимо полагаться лишь на понимание и проницательность (нередко в сопровождении громоздких вычислений), которым ошибки принципиально не свойственны.

Я вовсе не хочу сказать, что математики, полагающиеся на понимание, не делают ошибок, — делают, и даже часто: понимание тоже можно применить некорректно. Безусловно, математики допускают ошибки и в рассуждениях, и в понимании, а также в сопутствующих вычислениях. Однако склонность к совершению подобных ошибок, в сущности, не усиливает их способности к пониманию (хотя я, пожалуй, могу представить себе, каким образом подобные случайные обстоятельства могут порой привести человека к нежданному, скажем так, озарению). Что более важно — эти ошибки исправимы; их можно распознать как ошибки, когда на них укажет какой-либо другой математик (или даже впоследствии сам автор). Совсем иначе обстоит дело, когда понимание математика контролируется некоей внутренне ошибочной формальной системой F: в рамках такой системы невозможно распознать ее собственные ошибки. (Что касается возможности существования самосовершенствующейся системы, которая модифицирует самое себя всякий раз, как обнаруживает в себе противоречие, то о ней мы поговорим несколько позднее, «на подступах» к противоречию §3.14. Там же мы и обнаружим, что и от такого предположения в данном случае пользы мало; см. также §3.26.)

Ошибки несколько иного рода возникают при неверной формулировке математического утверждения; в этом случае выдвигающий утверждение математик, возможно, имеет в виду нечто совсем отличное от того, что он буквально утверждает. Впрочем, такие ошибки также исправимы и не имеют ничего общего с теми внутренними ошибками, причиной которых является понимание, опирающееся на необоснованную систему F (здесь уместно вспомнить фразу Фейнмана, которую мы цитировали в связи с возражением Q13: «Не слушайте, что я говорю; слушайте, что я имею в виду!»). Мы с вами здесь для того, чтобы выяснить, что в принципе может (либо не может) быть установлено каким угодно математиком (человеком); ошибки же, подобные только что рассмотренным, — т.е. исправимые ошибки — никакого отношения к этой проблеме не имеют. Важнейший, пожалуй, для всего нашего исследования момент: круг идей и понятий, доступных математическому пониманию, непременно должен включать в себя центральную идею доказательства Гёделя—Тьюринга; на этом, собственно, основании мы и не рассматриваем всерьез возможность I, а возможность II полагаем крайне невероятной. Как уже отмечалось выше (в комментарии к возражению Q13), идея доказательства Гёделя—Тьюринга, безусловно, должна являться частью того, что в принципе в состоянии понять математик, даже если какое-то конкретное утверждение «G(F)», на котором этот математик, возможно, основывается, ошибочно — лишь бы ошибка была исправимой.

С возможной «необоснованностью» предполагаемого алгоритма математического понимания связаны и другие вопросы, о которых не следует забывать. Эти вопросы касаются процедур «восходящего» типа — таких, к примеру, как самоусовершенствующиеся алгоритмы, алгоритмы обучения (в том числе и искусственные нейронные сети), алгоритмы с дополнительными случайными компонентами, а также алгоритмы, операции которых обусловлены внешним окружением, в котором функционируют соответствующие алгоритмические устройства. Некоторые из упомянутых вопросов были затронуты ранее (см. комментарий к возражению Q2), подробнее же мы рассмотрим их при обсуждении случая III, к каковому обсуждению мы как раз и приступаем.

3.5. Может ли алгоритм быть непознаваемым?

 В соответствии с вариантом III, математическое понимание представляет собой результат выполнения некоего непознаваемого алгоритма. Что же конкретно означает определение «непознаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципиальными. Так, утверждая, что неопровержимая истинность некоторого Π1-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное Π1-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый математик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам потребуется несколько иная интерпретация термина «непознаваемый». Я буду понимать его так: рассматриваемый алгоритм является настолько сложным, что даже описание его практически неосуществимо.

Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного известного алгоритма, рассуждения в терминах принципиально возможного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вывода того или иного конкретного предположения из такой формальной системы или алгоритма рассматривались в «принципиальном» контексте в силу элементарной необходимости. Похожим образом обстоит дело с установлением истинности Π1-высказываний. Π1-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тьюринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредственных вычислений. (Об этом мы говорили в комментарии к возражению Q8.) Аналогично, утверждение, что какое-то конкретное предположение выводимо (либо невыводимо) в рамках некоей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представляет собой вид утверждения об истинном (или, соответственно, ложном)характере какого-то конкретного Π1-высказывания (см. окончание обсуждения возражения Q10). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пониматься именно в таком «принципиальном» смысле.

Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическому» подходу. Принципиально возможно описать любую формальную систему, машину Тьюринга, либо Π1-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознаваемости» имел хоть какой-нибудь смысл, нам следует рассматривать его именно в плоскости возможности их практической реализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществляющая этот алгоритм операция машины Тьюринга становится «известной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и алгоритмические операции) можно представить в виде последовательности 0, 1, 2, 3, 4, 5, 6, …, двигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натурального числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляется возможным. Например, номер машины Тьюринга, описанной в НРК (на с. 56), явно слишком велик, чтобы его можно было получить на практике посредством подобного перечисления. Даже если мы были бы способны выдавать каждую последующую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизительно 0,5 × 10-43 с, см. §6.11), то и в этом случае за все время существования Вселенной, начиная от Большого Взрыва и до настоящего момента, нам не удалось бы добраться до числа, двоичное представление которого содержит более 203 знаков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК, это число определено в явном виде.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тени разума. В поисках науки о сознании"

Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роджер Пенроуз

Роджер Пенроуз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"

Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.