Владимир Катасонов - Сборник работ
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Сборник работ"
Описание и краткое содержание "Сборник работ" читать бесплатно онлайн.
Сборник работ Владимира Николаевича Катасонова, взятых с сайта:
http://katasonov-vn.narod.ru/.
Сборник не полный, будет пополняться создателем fb2-файла в новых версиях файла.
Ещё один аналогичный пример связан с основаниями теории вероятностей. Здание теории вероятностей можно представлять себе по-разному. Принципиальный момент здесь — это вопрос о вероятности так называемых элементарных исходов: вероятностей выпадания «орла» или «решётки» при бросании монеты, какой-то стороны кубика и т. д. Почему мы считаем, например, что вероятность выпадения «орла» у симметричной монеты равна вероятности выпадения «решётки» (и равна 0,5)?.. Так называемое частотное определение вероятности, развивавшееся в XX столетии, в частности, Р. Мизесом, не выдерживает элементарной критики. Утверждение о том, что вероятность появления признака А в определённой серии испытаний равна пределу частоты его появлений в конечном числе испытаний, невозможно оправдать без дополнительных и довольно искусственных ограничений. Нетрудно показать, что какой бы ни была частота rn0 появления признака А в первых n0 испытаниях, можно всегда построить такую последовательность испытаний с номерами n1 > n0 , что частоты rn будут, начиная с некоторого N отстоять от rn0 на некоторое e>0:
|rn — rn0|>e, n>N
Другими словами, частота в конечном числе испытаний отнюдь не характеризует предельную частоту появления признака. К последней невозможно «подобраться», так сказать, конечными испытаниями, если не делать дополнительных ограничительных предположений. Но каков философский смысл этих дополнительных предположений, что говорят они нам о самой реальности?..[139]
Чуткие умы всегда чувствовали этот живой парадокс, заключённый в понятии вероятности: с помощью вероятностей элементарных исходов мы можем считать вероятности более сложных событий, но сосчитать вероятность самого элементарного исхода мы не можем[140]. А. Пуанкаре писал в своём «Исчислении вероятностей»: «Полное определение вероятности есть, тем самым, род порочного круга: как узнать, что все случаи равновероятны? Математическое определение здесь невозможно; мы должны в каждом применении делать соглашения (conventions), говоря, что мы рассматриваем такие-то и такие случаи как равновероятные. Эти соглашения не совсем произвольны, но они ускользают от сознания математика, который и не должен их исследовать, как только они уже приняты. Таким образом, целое задачи о вероятности распадается на два этапа исследования: первый, так сказать, метафизический, который оправдывает то или иное соглашение; и второй, математический, который применяет к этим соглашениям правила исчисления»[141]. Теория вероятностей как математическая дисциплина, особенно после формулировки её в аксиоматической форме А.Н. Колмогоровым в 1933 году, должна быть отнесена как раз ко второму этапу. А первый, метафизический, это и есть тот, которым мы сейчас занимаемся. Как же оправдать априорные вероятности, назначаемые элементарным исходам? Здесь мы опять видим в работе принцип недостаточного основания. Когда мы говорим о симметрии монеты или кубика, мы, на самом деле, и подчёркиваем как раз, что у нас нет оснований считать выпадение одной стороны более возможным, чем другой, и эта равновозможность превращается в исчислении вероятностей в равновероятность. Равновероятность элементарных исходов — всё тот же «закон инерции», всё то же парадоксальное строительство здания знания на фундаменте незнания, на фундаменте, прочность которого гарантирована именно абсолютностью незнания. Эта своеобразная апофатика оказывается лежащей и в основании теории вероятностей.
§ 3. Научные теории бесконечности и апофатика
Но наиболее ярким «репрезентантом» апофатики в науке являются различные теории бесконечности и вообще всё, что связано с бесконечностью. И это неслучайно. Бесконечность в науке есть как бы отражение идеи христианского (библейского) Бога. Для греческой античности, в лице её наиболее авторитетных представителей, категория бесконечного не может входить в науку. «Бесконечное не существует ни в космосе, ни в уме», — говорил Аристотель. Бесконечное сближается греческой мыслью с неоформленным, текущим, со становлением, стоящим на границе бытия и небытия: бесконечное деление отрезка, бесконечное увеличение числа и т. д.[142]. В силу этого бесконечное — если даже и признавать его существование — непознаваемо. Другими словами, отношение к бесконечному в греческой античности именно апофатическое.
С христианством в европейскую культуру приходит бесконечный Бог: всемогущий, всеведущий, всеблагой. В христианской теологии начинаются первые спекулятивные построения вокруг понятия бесконечности. Постепенно они проникают и в науку. Начинаются попытки катафатического подхода к бесконечности. Пока богословие, укоренённое в прямом духовном опыте богообщения, контролируемое соборным церковным сознанием, бдительно сохраняет трезвое представление о границах катафатического подхода, твёрдо помнит о непостижимости Божества в Нём Самом, спекулятивные построения, связанные с бесконечностью, не превосходят, так сказать, должной меры и соотносятся с традицией. Но со времени позднего средневековья ситуация в западном христианстве меняется. В богословии всё большую роль начинают играть отвлечённые рациональные построения (например, Николая из Кузы) с одной стороны, и в высшей степени нетрезвые мистические откровения — с другой (например, Мейстер Экхарт, Я. Беме и др). И у обеих этих линий всегда есть общий предмет для рассуждений: бесконечность. Поэтому возникающие в XVII столетии дифференциальное и интегральное исчисления совершенно неслучайны: почва для этих всходов уже подготовлена несколькими веками многообразных спекуляций о бесконечном. В то же время, дифференциальное и интегральное исчисления входят в науку достаточно «революционно», заглушая победными сообщениями о решении всё новых задач негромкие голоса скептиков, безуспешно пытающихся напомнить об апориях и парадоксах, неотделимых от понятия актуально бесконечного (Б.Паскаль, Дж. Беркли).
Однако собственно катафатики бесконечного сразу не получается. Три века дифференциальное и интегральное исчисления остаются, скорее, просто методом, чем строгой научной теорией: есть алгоритмы, но нет понимания. Нет, в частности, и строгой теории действительного числа. Положение начинает меняться только во второй половине XIX столетия. Предлагаются, в частности, несколько конструкций числового континуума — и все они используют актуальную бесконечность. Наконец, с 70-х годов XIX века Г.Кантор начинает публиковать свои статьи по теории множеств, которая должна была стать именно наукой (арифметикой, анализом) бесконечного. В бесконечном, которое до этого выступало как единое, непознанное начало, действительно проводятся некоторые важные различения. Кантор выделяет: Абсолют — бесконечное в Боге, трансфинитное — бесконечное в сотворённом мире, и трансфинитные числа — предмет его теории, арифметика бесконечного. Он трезво формулирует (вначале), что наука не занимается Абсолютом, предметом богословия. По поводу бесконечного в природе у Кантора были некоторые научные гипотезы, которые, однако, никогда и никем не были проверены[143]. Оставались только трансфиниты, теория множеств. Здесь с самого начала были обнаружены серьёзнейшие парадоксы. Один из них — парадокс Бурали-Форти (1897) — показывал противоречивость самого понятия шкалы всех порядковых чисел (ординалов). Кантор пытается «вытолкнуть» этот парадокс за границу теории множеств новым различением: констистентных и неконстистентных множественностей. Теория множеств по определению занимается только консистентными множественностями, т. е. такими, которые «можно мыслить без противоречия». А множество всех ординалов — неконсистентно… Но остаётся вопрос: а как проверять бесконечное множество на консистентность? Почему мы уверены, что даже самое простое бесконечное множество N = {1,2,3….} есть консистентное множество (Р.Дедекинд)? Ответов на это получено не было…
Кроме того, Кантор и его ученики, которые довольно быстро выделили из построений учителя аксиоматику теории множеств, настаивали, чтобы бесконечность подчинялась определённым требованиям. Одно из них есть знаменитая аксиома выбора, формулировка которой кажется довольно естественной: если у нас есть бесконечное (скажем, счётное) множество непустых множеств, то можно образовать новое множество, содержащее только по одному элементу каждого из данных. При всей, казалось бы, простоте этого утверждения любые попытки как-то объяснить его, не говоря уже доказать, оказывались безуспешными. Положение напоминало ситуацию со знаменитым V постулатом Евклида и, исходя из опыта обсуждения этого постулата, из построения неевклидовой геометрии, естественно вставал вопрос: а, может быть, возможна теория множеств и без аксиомы выбора?.. Благодаря работам К.Геделя (1939) и П.Коэна (1963) была показана независимость аксиомы выбора от остальных аксиом теории множеств Цермело-Френкеля. Со временем вместо аксиомы выбора были предложены другие аксиомы (например, аксиома детерминированности), которые порождали другие, неканторовские, теории множеств и построенные на последних довольно необычные «неканторовские математики».
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Сборник работ"
Книги похожие на "Сборник работ" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Владимир Катасонов - Сборник работ"
Отзывы читателей о книге "Сборник работ", комментарии и мнения людей о произведении.