» » » » Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ


Авторские права

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Здесь можно скачать бесплатно "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1967. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
Рейтинг:
Название:
ВОЛШЕБНЫЙ ДВУРОГ
Издательство:
Детская литература
Год:
1967
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ВОЛШЕБНЫЙ ДВУРОГ"

Описание и краткое содержание "ВОЛШЕБНЫЙ ДВУРОГ" читать бесплатно онлайн.



В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики - так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

-

Для среднего и старшего возраста.






3•(1 + 2 + 4 + 8 + 16 + 32 + 64).

"Ага! - подумал Илюша. - Значит, он их все сложил, а первый член вынес за скобку".

Человечек Знаменатель утвердительно кивнул Илюше.

Мальчик подумал, что этот безмолвный учитель, который обладает столь тонким слухом, что слышит даже и то, чего ты не произносил, - довольно интересная новость!

Тут же цифры на жилетках человечков заменились буквами:

a1(1 + q1 + q2 + q3 + q4 + q5 + q6 + ... + qn-2 + qn-1).

"Правильно! - решил про себя Илюша. - Просто он заменил цифры алгебраическими обозначениями. Тут в конце стоят qn-2 и qn-1 - в том смысле, что прогрессию по тому же правилу можно тянуть вправо до любого члена. А почему членов у нас n, а старший показатель q не n, а (n-1)? Ах да!

Ведь впереди есть еще единица, то есть q°. Значит, один и еще (n-1) - вот и выйдет опять ровно n. Ясно! Значит, в сумме всякой геометрической прогрессии Можно взять первый член за скобку, а в скобках останутся степени знаменателя".

Человечек Знаменатель глянул мельком на Илюшу и, заметив, что тот все понял, даже не счел нужным кивнуть ему.

- 193 -

Затем он поднял свой длиннейший указательный палец правой руки вверх, покачал им торжественно, как бы приглашая Илюшу отнестись повнимательнее к тому, что он сейчас ему покажет. После этого он взял три первых члена из скобок, поставил их перед Илюшей и снова заключил в скобки.

(1 + q + q2)

Затем Знаменатель показал Илюше на эту тройку знаков и выразил на своем лице некое недоумение, как бы приглашая Илюшу объяснить: что он перед ним поставил? Илюша посмотрел на него, потом на троих человечков и ничего не мог придумать. Знаменатель недовольно нахмурился, сделал знак человечкам, и тогда первый и третий поменялись местами. Знаменатель снова сделал недоуменную мину и опять показал Илюше на тройку приятелей. Илюша посмотрел. Перед ним стояло:

(q2 + q + 1)

Это было то же самое, только два члена выражения поменялись местами.

"Э! - подумал Илюша. - Да это просто неполный квадрат суммы!"

Не успел он это подумать, как вдруг откуда-то раздалось ядовитое хихиканье, и слишком хорошо ему известный голосок вездесущего Уникурсала Уникурсалыча произнес очень отчетливо:

- Ах, какой догадливый мальчик! А до того, как переставили, это, значит, не было неполным квадратом суммы? Вон как!

Илюша густо покраснел, хотел было что-то ответить, но не мог придумать ничего дельного, а человечек Знаменатель радостно закивал ему в знак согласия, немедленно вычел из самого себя единицу, залез в скобки, и перед Илюшей появилось:

(q2 + q + 1) (q - 1) = ?

"Неполный квадрат суммы, - подумал Илюша, - если его умножить на разность первых степеней, будет равен разности кубов. Все ясно. Но к чему это он ведет?"

Человечек Знаменатель хитро подмигнул Илюше, как бы говоря: "Сейчас узнаешь!" - и перед мальчиком появилось:

(q2 + q + 1) (q - 1) = q3 - 1.

"Ну конечно!" - подумал Илюша. Затем скобки немного раздвинулись, в них забрался еще человечек. Теперь получилось:

(q3 + q2 + q + 1) (q - 1) = q4 - 1.

- 194 -

"Ишь ты! - подумал Илюша. - Как же так выходит?" Но когда он попробовал в уме перемножить скобки левой части, то убедился, что как раз так и получается. "Действительно, - подумал он, - когда я умножу q3 на q, то выйдет q3; когда умножу 1 на (- 1), то получится -1, а все остальное взаимно уничтожается, потому что от умножения на q всех членов, кроме первого, я получу q3, q2, q и все будут с плюсом, от умножения на (-1) всех членов, кроме последнего, я получу те же q3, q2, q, но все будут с минусами. Значит, только и останется q4 и - 1. Все верно!"

Тогда в скобки влез еще один человечек, и вышло:

(q4 + q3 + q2 + q + 1) (q - 1) = q5 - 1.

Тут Илюша, рассуждая совершенно таким же образом, пришел снова к заключению, что и это тоже правильно.

А затем человечки стали так:

(qn-1 + qn-2 + ... + q4 + q3 + q2 + q + 1) (q - 1) = qn - 1.

"Так, - подумал Илюша. - Тут начинается с qn-1. To-есть он хочет сказать, что это правило годится для любой степени".

Подумав немного, Илюша убедился, что Знаменатель совершенно прав.

Вслед за этим его новый приятель быстро схватил скобочку (q-1) и перенес в знаменатель правой части. Получилось:

qn-1 + qn-2 + ... + q4 + q3 + q2 + q + 1 = (qn - 1) / (q - 1).

Затем человечки быстро поменялись местами, и вышло:

1+ q + q2+ q3 + q4+...+qn-2+ qn-1 = (qn - 1) / (q - 1).

Теперь человечек Знаменатель изобразил на своем личике самую приятную улыбку и снова показал получившуюся формулу Илюше, как бы приглашая его полюбоваться тем, что получилось.

Илюша внимательно посмотрел на формулу и подумал:

"Значит, налево стоит сумма геометрической прогрессии, у которой первый член равен единице. И теперь он получил выражение для этой суммы".

Знаменатель улыбнулся и привел двух человечков, у которых на жилетках стояла цифра "3". Затем между ними возник знак равенства, а у левого человечка тройка заменилась буквой, и вышло:

a1 = 3.

"Так! - подумал Илюша. - Ну, я уж это знаю: первый член равен тройке".

- 195 -

Тогда у обоих человечков на жилетках появились одинаковые буквы. Человечек Знаменатель поставил одного к левой части своего равенства, а другого - к правой, и вышло:

a1(1+ q + q2+ q3 + q4+...+qn-2+ qn-1 ) = a1 (qn - 1) / (q - 1).

"Обе части он умножил на первый член прогрессии, - подумал Илюша. - Это можно, конечно. Ну, и что ж у нас теперь вышло? Эх! Да это теперь как раз и получилась сумма всей прогрессии!"

В это время появилась какая-то длинная пожилая дама, которая взглянула на Илюшу с возмущением и пожала в ужасе плечами. По-видимому, это была очень нервная особа, потому что человечек Знаменатель обращался с ней до крайности предупредительно. Он подвел ее к своему равенству.

Рыжая дама горестно вздохнула, и на груди ее смутно вырисовалась буква S. "Сумма!" - подумал Илюша, а человечек Знаменатель сочувственно кивнул ему, как бы говоря:

"Пренеприятная особа! Ну, да ведь ничего не поделаешь!"

И получилось следующее равенство:

S = a1(1+ q + q2+ q3 + q4+...+qn-2+ qn-1 ) = a1 (qn - 1) / (q - 1).

= а, с чем Илюша не мог не согласиться, а затем вся серединка формулы исчезла, и появилось окончательное выражение суммы:

S = a1 (qn - 1) / (q - 1)

- 196 -

Илюша громко и отчетливо произнес:

- Для того чтобы найти сумму геометрической прогрессии, нужно первый член прогрессии умножить на дробь, числитель которой равен разности между знаменателем прогрессии в степени, равной числу членов, и единицей, а знаменателем этой дроби является разность между знаменателем прогрессии и единицей.

Затем человечек Знаменатель разорвал свою дробь надвое:

S = a1 [qn / (q - 1) - 1 / (q - 1)]

а потом открыл скобки:

S = a1qn / (q - 1) - a1 / (q - 1)

А вслед за тем Знаменатель еще раз поглядел на Илюшу и важно поклонился ему.

На лице его было написано полное удовлетворение всем происшедшим.

Рыжая дама сжала свои костлявые пальчики и смиренно посмотрела вверх. Илюша тоже машинально поглядел вверх и вдруг увидел, что на маленьком парашютике спускается крохотный, с кулачок, плюшевый Мишка.

Мишка спустился, встал на задние лапки и сказал Илюше, что его зовут Эн.

- Значит, ты число членов прогрессии?

- Угадал! - пискнул Мишка.

Вслед за этим началось акробатическое представление. Рыжая дама, стараясь не глядеть на Илюшу, стала слева. За ней в воздухе повис знак равенства. Затем Знаменатель повесил в воздухе две большие дробные черты, между ними приладил длинный тонкий минус. При этом он вдруг три раза щелкнул пальцами и превратился из одного человечка Знаменателя в троих, совершенно одинаковых. Один из них забрался на первую из двух дробных черт, рядом с первым членом прогрессии.

- 197 -

Плюшевый Мишка вдруг страшно оживился, прыгнул, точно кузнечик, и прямо с пола перелетел ему на тулью цилиндра. Получилась снова уже известная Илюше формула:

S = a1qn / (q - 1) - a1 / (q - 1)

Буква n, которую Мишка столкнул своей плюшевой ланкой с цилиндра человечка Знаменателя, кое-как приподнялась с пола и жалобно пропищала:

- Я буду больше единицы!

В ответ на это плюшевый Мишка, очень удобно примостившийся на краю цилиндра Знаменателя, начал пыхтеть и понемножку толстеть, а дама начала понемногу расти вверх.

Илюша подумал: "Эн увеличивается, и сумма растет.

Ну да, так и должно быть, конечно! Чем больше будет число членов, тем и сумма будет больше. Ясно!"

А Мишка посмеивался и все толстел. Дама тоже все тянулась вверх. Мишка уже стал ростом с кошку, а дама выросла примерно вдвое. Самое странное при этом было то, что она не толстела, а только тянулась вверх и становилась все более тощей. Мишка вырос до размеров целого теленка, так что оставалось только удивляться, как он умещается на цилиндре, уцепившись за него задней лапой. Длинная дама уже даже начала как-то странно покачиваться, точно малейший ветерок мог ее свалить. А Мишка стал как настоящий Топтыгин.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ВОЛШЕБНЫЙ ДВУРОГ"

Книги похожие на "ВОЛШЕБНЫЙ ДВУРОГ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Бобров

Сергей Бобров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ"

Отзывы читателей о книге "ВОЛШЕБНЫЙ ДВУРОГ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.