» » » » Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ


Авторские права

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Здесь можно скачать бесплатно "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1967. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
Рейтинг:
Название:
ВОЛШЕБНЫЙ ДВУРОГ
Издательство:
Детская литература
Год:
1967
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ВОЛШЕБНЫЙ ДВУРОГ"

Описание и краткое содержание "ВОЛШЕБНЫЙ ДВУРОГ" читать бесплатно онлайн.



В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики - так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

-

Для среднего и старшего возраста.






Понял?

- Ничего не понял! - воскликнул Илюша.

- Прекрасно! - отвечал Радикс. - Начнем сначала. Ты знаешь, что такое четные числа?

- Ну конечно. Это те, которые делятся на два.

- Верно. А нечетные?

- 207 -

- Ну, которые на два не делятся: три, пять, семь и так далее.

- Приятно слышать. Какой милый, догадливый мальчик!

Так вот, Мишкина задачка, а также задачка с бесконечной гостиницей заключаются вот в чем. Если взять все числа, то есть четные и нечетные, ведь это будут все натуральные числа, не правда ли?

- Ну конечно, потому что, кроме четных и нечетных, больше никаких нет. Так они и идут одно за другим: нечетное, потом четное, потом опять нечетное и так далее без конца.

- Одно за другим, по очереди?

- Конечно! Что ты меня спрашиваешь о таких вещах?

Уж это, кажется, до того просто, что малое дитя знает!

- Ах, так это просто, по-твоему? Ну посмотрим, что ты дальше скажешь! Так, значит, выходит, что четных и нечетных чисел одинаковое количество.

- Конечно, - ответил Илюша. - Если взять, например, до какого-нибудь четного числа, ну хоть до этого нонильона децильонов, то будет поровну и четных и нечетных.

- Так и запишем. Попробуем только взять еще немножко подальше, а то для Мишкиной задачки это крохотное числишко - нонильон децильонов - не подходит. Возьмем до бесконечности. Так вот, ответь мне, пожалуйста: если мы возьмем все числа, а потом выберем только одни четные и напишем в два ряда - в одном ряду будут все: и четные и нечетные, а в другом одни четные, - так в котором ряду будет чисел больше, в верхнем или в нижнем?

- Ну конечно, во втором ряду будет вдвое...

Но тут почему-то Илюша замолчал, и на его лице изобразилось полнейшее недоумение.

- Ну-с, - сказал Радикс, - я вас слушаю! В котором ряду будет больше, в верхнем или в нижнем?

Илюша грустно вздохнул и сказал:

- Должно быть во втором ряду вдвое меньше, а на самом деле...

- А на самом деле? - повторил вопросительно Радикс. - Да что тут долго думать! Вон они, посмотри-ка!

Илюша обернулся, посмотрел на стену и увидел:

1 2 3 4 5 6 7 8 9 10 11 12 13 14...

2 4 6 8 10 12 14 16 18 20 22 24 26 28...

Оба ряда тянулись вправо ужасно далеко, но как ни заглядывал Илюша вправо, как он ни напрягал зрение, оба они шли совершенно вровень, а конца им не было.

- Так как же? - опять спросил Радикс.

- 208 -

- Выходит, что их - и тех и других - одно и то же количество.

Илюша пожал плечами.

- Не понимаю! - сказал он. - Вижу, что одно и то же количество, и соображаю, что сколько ни тяни верхний ряд, нижний от него отставать не будет, потому что нижний - это тот же верхний, только умноженный на два, но понять не могу.

Не могу, потому что нижний в то же самое время есть часть верхнего. Но ведь часть меньше своего целого?

- Меньше, покуда речь идет о числах, о конечных величинах. А раз ты имеешь дело с бесконечностью, то, как ты сейчас сам видишь, это не так. Там вовсе не обязательно, чтобы часть была меньше своего целого. В данном случае часть совершенно такая же, как и ее целое. И это странное целое можно еще по-разному разбить на части, и опять получится то же самое. Великий Галилео Галилей в книге, которая называется "Беседа о двух новых науках" и которая вышла б свет в тысяча шестьсот тридцать восьмом году, задает примерно такой вопрос: "Верно ли будет, если я скажу, что количество правильных квадратов, как "четыре", "девять", "шестнадцать", "двадцать пять" и так далее, меньше количества всех чисел, поскольку число правильных квадратов непрерывно и очень скоро убывает по мере того, как мы двигаемся вперед по натуральному ряду чисел по направлению ко все большим и большим числам? Для примера укажу, что в первой сотне я насчитываю десять квадратов, что составляет одну десятую всех чисел до сотни включительно; затем до десяти тысяч их будет сто, то есть одна сотая, а до миллиона их будет одна тысячная и так далее". Поскольку это так, то несомненно правильно, что в любом конечном числе квадратов будет гораздо меньше, чем всех чисел, и чем оно будет больше, тем относительно их будет меньше. Однако, как только мы переходим к бесконечности, оказывается, что я могу все это рассмотреть совершенно с другой точки зрения. Напишем вот таких два ряда:

1 2 3 4 5 6 7 8 9 10 11 12...

1 4 9 16 25 36 49 64 81 100 121 144...

Под каждым числом натурального ряда я подписываю во втором ряду его квадрат, и оба ряда будут тянуться вровень без конца. "Поэтому, - говорит далее Галилей, - нельзя сказать, которых чисел больше, которых меньше. Можно только сказать, что их бесконечное множество - и тех и других". Свойства конечных чисел, таким образом, на бесконечные множества распространять невозможно.

- 209 -

Из этого луча можно сделать два луча.

- Все это так, - медленно произнес Илюша, - а понять все-таки очень трудно.

- Ничего удивительного здесь нет, - отвечал Радикс, - что тебе вся эта задача кажется такой трудной.

Современные ученые полагают, что она была настолько трудна для современников Галилея, что не столько привлекла их внимание к этим тонким вопросам, сколько отпугнула их своей необычностью и необъяснимостью. Но не торопись, кое-что можно будет тебе разъяснить в дальнейшем.

- Хорошо бы... - отвечал наш герой.

- Трудность здесь заключается в том, что мы не можем пересчитать числа в том и другом ряду. Так как это невозможно, то нам остается только подумать, нельзя ли найти какой-нибудь способ сравнивать друг с другом бесконечные множества.

И вот что тут можно предложить.

Представь себе, что ты пришел в школу на вечер. Собралась масса мальчиков и девочек. Зал большой, страшная толкотня, а тебе хочется узнать, кого больше: мальчиков или девочек? Сколько тех и других, тебя не интересует. Ты хочешь только выяснить, кого больше. Как это сделать? Самое простое - попросить оркестрантов, чтобы они заиграли вальс. Тотчас же все станут парами, и тут ты увидишь, кого больше. Теперь ты видишь, что я и применяю этот самый способ к бесконечным множествам, например ко множеству всех чисел и множеству квадратов: сопоставляю их попарно, а раз это удается, значит, что никакой разницы между множеством всех чисел и множеством квадратов в отношении количества их элементов нет.

- 210 -

Но только математики говорят в таких случаях не "количество" элементов, а так: эти два множества имеют "одинаковую мощность"[16].

- А теперь уже мне кажется, что всякие два бесконечных множества будут иметь одинаковую мощность! - сказал Илюша. - Если я, например, начну располагать в ряд элементы одного из них, а ты в это время будешь делать то же самое с другим, то выйдет, что мое и твое множества одинаковой мощности, как если я буду перебирать подряд все числа, а ты одновременно со мной только все четные.

- Нет, - ответил Радикс, - не все бесконечные множества можно так исчерпать. Например, если взять множество всех точек на отрезке прямой, то его таким способом исчерпать нельзя. У нас говорят, что оно имеет "более высокую мощность", чем множество, например, всех натуральных чисел.

- По поводу точек на отрезке я вспоминаю, - сказал Илюша, - что ты мне говорил, будто из одного луча можно сделать два.

- Даже не два, а бесконечное множество. И это очень просто. Представь себе, что на твоем луче отложен отрезок, равный единице, потом еще один, и так до бесконечности. Перенумеруй по порядку эти отрезки, а затем, как хозяин Мишкиной гостиницы, из четных, сдвинув их вместе, сооруди один луч, а из оставшихся нечетных - другой. Потом можешь повторить это с каждым из них, и так столько раз, сколько тебе угодно. А если догадаешься, можешь и сразу начать так перераспределять эти единичные отрезки, чтобы получилось бесконечное число лучей.

- Но если конечный отрезок разделить пополам, в каждой части будет вдвое меньше точек, чем в целом отрезке?

- Нет! - ответил Радикс. - Это снова тот же самый Мишкин неразменный рублик. В смысле "мощности" количество точек в целом отрезке и в его половине одинаково. Ты можешь в этом убедиться хотя бы так. Помнишь, что средняя линия треугольника равна...

- Половине основания!

- Вот именно. А теперь проведи из вершины противоположного угла прямые, соединяющие ее с точками основания.

Каждая из этих прямых пересечет и среднюю линию в какой-нибудь точке. Вот и получится, что каждой точке основания отвечает при таком построении точка на средней линии.

- 211 -

- И все-таки основание вдвое длиннее! Как это объяснить?

- Ты забываешь, что точки "не имеют длины" и длина отрезка вовсе не слагается из "длин" составляющих его точек.

Поэтому к длинам отрезков сравнение мощностей здесь никакого отношения не имеет.

- Я не пойму, - сказал Илюша. - Ведь отрезок состоит из точек, а точка не имеет длины. Откуда же берется в таком случае длина отрезка?

- Ты не понимаешь потому, что ты привык изображать точки маленькими пятнышками, которые, конечно, имеют протяженность. Если бы ты изображал точки маленькими отрезками, расположенными вдоль этого отрезка, то на тех же основаниях ты мог бы сказать, что "направление" отрезка "слагается" из "направлений" составляющих его точек. Но ведь ты этого не скажешь: тебе ясно, что точка "не имеет направления". Говорить о направлении можно, только если есть по крайней мере две различные точки. Согласен?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ВОЛШЕБНЫЙ ДВУРОГ"

Книги похожие на "ВОЛШЕБНЫЙ ДВУРОГ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Бобров

Сергей Бобров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ"

Отзывы читателей о книге "ВОЛШЕБНЫЙ ДВУРОГ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.