» » » » Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.


Авторские права

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь можно скачать бесплатно "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Рейтинг:
Название:
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0730-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Описание и краткое содержание "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать бесплатно онлайн.



В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.






Если, напротив, х = 1, получим y² = 0, то есть у — 0. Подставим в уравнение х = —1.

Правая часть будет равна (—1)3—2 (—1) + 1 = —1 + 2 + 1 = 2, уравнение примет вид y² = 2. Его решениями будут у = √2 и у = —√2. Таким образом, точки с координатами (—1, √2) и (—1, —√2) также будут лежать на кривой. Эти решения не являются целыми, но это не важно — чтобы изобразить кривую на плоскости, нужно учесть все вещественные решения.

Эллиптическая кривая, заданная уравнением y² = х3-2х + 1.

Теперь выберем две точки Р и Q, лежащие на кривой, и соединим их прямой линией. Будем предполагать, что Р и Q несимметричны относительно оси абсцисс,

98

чтобы соединяющая их прямая не располагалась вертикально. Эта прямая пересечет кривую в точке, которую мы обозначим через PQ. Результатом операции над точками Р и Q будет точка Р + Q, симметричная PQ относительно оси абсцисс.

Результат операции сложения для точек P и Q эллиптической кривой.

Необходимо уточнить несколько моментов. Во-первых, прямая, проходящая через точки Р = (x1, y1) и Q = (х2, у2), пересекает кривую в некоторой третьей точке.

Так как мы предположили, что эта прямая не располагается вертикально, ее уравнение будет иметь вид у = mх + n, где m и n — вещественные числа. Подставив это выражение в уравнение нашей эллиптической кривой, получим:

(mx + n)² = x3 +ax+b.

Путем элементарных преобразований это уравнение можно привести к виду:

х3-Ах² + Вх + С = 0, (**)

где A = m², В = a — 2mn, С = b — n². Следовательно, теперь нам нужно вычислить корни многочлена третьей степени с вещественными коэффициентами. Два корня уже известны: это абсциссы x1 и х2 точек Р и Q, так как обе эти точки одновременно лежат и на кривой, и на прямой. Используем следующую лемму.

Лемма. Если многочлен третьей степени с вещественными коэффициентами имеет два вещественных корня, то третий корень многочлена также будет вещественным.

99

Докажем лемму. Пусть

Р(х) = x3 + Rx² + Sx + Т

многочлен третьей степени с вещественными коэффициентами. Обозначим его корни через x1, х2, х3. Следовательно, Р(х) можно представить в виде

Р(х) = (х - x1) (х - х2) (х - х3).

Выразим коэффициенты многочлена через его корни:

Р(х) = x3 — (х1 +x2 +х3)х² +(x1 x2 +x1 x3 +x2 x3)х — x1 x2x3.

К примеру, — R = x1 + х2 + х3. Чтобы получить третий корень многочлена, нужно вычесть —R из первых двух. По условию, и коэффициент R, и корни x1 и х2 — вещественные числа, следовательно, x3 также будет вещественным числом.

По лемме, которую мы только что доказали, существует вещественное число х3, которое удовлетворяет уравнению (**).

Подставив это число в равенство у = mx + n, получим координату у3 точки PQ. Осталось найти координаты симметричной ей точки — для этого заменим ординату на противоположную. Результатом операции над точками (x1, y1) и (х2, у2) будет точка (х3, —у3).

Мы показали, что точки Р = (0, 1) и Q = (1, 0) принадлежат эллиптической кривой y² = x3 —2х + 1. Вычислим координаты точки Р + Q. Для этого сначала нужно найти уравнение прямой, проходящей через Р и Q. Несложно показать, что эта прямая задается уравнением у = —х + 1. Получим уравнение:

(—х +1) 2 = x3 —2х +1 ↔ х²—2х + 1 = x3 —2х + 1 ↔ х² = x3 ↔ х² (х — 1) = 0.

Решениями этого уравнения будут х = 0 (дважды) и х = 1. Так как x1= 0 и х2 = 1, искомой точкой будет x3 = 0.

Подставив это значение в уравнение у = —х + 1, получим у = 1.

Таким образом, результатом операции над Р и Q будет точка Р + Q с координатами (0, —1).

Заметим, что в этом случае результатом операции над двумя целочисленными решениями уравнения вновь будет целочисленное решение.

В общем случае это верно тогда, когда коэффициенты уравнения являются целыми числами. Доказательство этого утверждения, по сути, ничем не отличается от доказательства приведенной выше леммы.

Мы преодолели первое препятствие: мы показали, что если прямая проходит через две несимметричные точки эллиптической кривой, то она также пересечет кривую в третьей точке. Но что произойдет, если точки Р и Q симметричны?

100

Они будут иметь координаты Р = (x1, y2) и Q = (х1—у2), а соединяющая их вертикальная линия будет задаваться уравнением х = х1 Подставив в уравнение эллиптической кривой х = x1 получим у² = х13 + ах1+b. Мы исключили переменную х и получили, что y² равно вещественному числу. Это уравнение имеет всего два решения, ух и — yv следовательно, прямая, соединяющая Р и Q, не будет пересекать эллиптическую кривую ни в одной другой точке. PQ не существует! Как же справиться с этой проблемой? Решение подскажут художники Возрождения, которые изобрели перспективу. Чтобы сделать свои полотна более реалистичными, они изображали параллельные прямые сходящимися в удаленной точке, называемой точкой схода. Последуем примеру художников и будем считать, что наша вертикальная прямая пересекает эллиптическую кривую в третьей точке О, расположенной на бесконечности. Эта точка будет играть роль точки схода.

Фреска «Троица» работы Мазаччо (1401-1428) — первого художника эпохи Возрождения, который использовал в своих работах математические законы перспективы, чтобы придать им ощущение глубины.

101

Точка О будет иметь реальный математический смысл, если мы введем третью переменную z так, что уравнение эллиптической кривой примет вид y²z = x3 + axz² + bz3.

Теперь все члены уравнения имеют третью степень. Это в некотором смысле означает, что отличить тройку (х, у, z) от любой из кратных ей ненулевых троек (Λх, Λy, Λz) невозможно: если мы подставим эти значения в уравнение, то всегда сможем сократить общий множитель Λ3. Мы получили координаты, которые называются однородными и обозначаются (х: у: z), чтобы указать, что две точки, которые на первый взгляд кажутся различными, как, например (1: 2: 3) и (2: 4: 6), в действительности совпадают, так как имеют кратные координаты. Можно предполагать, что координата z принимает только значения 0 и 1. При z = 1 уравнение кривой примет вид y² = x3 + ах + b и мы получим те же самые точки, которые рассматривали вначале. При z = 0 имеем x3 = 0, следовательно, х также равен 0. Так как три координаты не могут быть равны нулю одновременно, у должен быть отличным от нуля. Однако все точки вида (0: у: 0) равны, так как имеют кратные координаты, следовательно, можно предположить, что у — 1. Имеем новую точку (0:1: 0), которая не принадлежит кривой y² = x3 + ах + b. Это и будет наша точка О!

Подведем итог: сначала мы доказали, что любая прямая, не расположенная вертикально и проходящая через две точки эллиптической кривой, также пересечет кривую в третьей точке. Теперь, введя бесконечно удаленную точку, мы показали, что это же утверждение верно и для вертикальной прямой. Следовательно, можно определить операцию над любыми несовпадающими точками Р и Q. Но что, если эти точки совпадают? Начнем с того, что рассмотрим две различные точки Р и Q и будем постепенно приближать точку Q к точке Р. Прямые, соединяющие Р и Q, также будут смещаться. Пределом этих прямых будет касательная к кривой, которая в окрестностях точки Р не будет пересекать кривую ни в одной другой точке.

Касательная к кривой в точке P.


102

Когда точки Р и Q будут совпадать, будем рассматривать не прямую, соединяющую Р и Q, а касательную к кривой в точке Р. Путем аналогичных рассуждений можно показать, что эта прямая пересечет кривую в другой точке РР. Найдя точку, симметричную РР относительно оси абсцисс, получим искомый результат операции

Р + Р = 2Р.

Осталось прояснить одну небольшую тонкость: так как мы добавили к нашей кривой точку О, необходимо определить, каким будет результат операции над О и произвольной точкой кривой. Когда мы работаем с однородными координатами, точка О имеет тот же статус, что и все прочие точки кривой, следовательно, мы можем провести прямую, проходящую через О и Р, и повторить описанные выше рассуждения. При этом неизменно будет выполняться равенство О + Р = Р, таким образом, О — нейтральный элемент для определенной нами операции над точками эллиптической кривой.

Итак, мы определили операцию, которая любой паре точек кривой (совпадающих или нет) ставит в соответствие третью точку. Докажем, что эта операция является групповой. Мы уже указали, что О — нейтральный элемент группы. Определить точку, обратную точке Р, очень просто: эта точка (обозначим ее Р') будет симметрична ей относительно оси абсцисс, так как прямая, соединяющая Р и Р', расположена вертикально, следовательно, пересекает кривую в точку О, и Р + Р' = О.

Чтобы показать, что эта операция действительно определяет группу на множестве решений уравнения y² = x3 + ах + b, осталось доказать, что она обладает свойством ассоциативности.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Книги похожие на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Хавьер Фресан

Хавьер Фресан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Отзывы читателей о книге "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.