» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Изменим на время обозначения, и амплитуду <n|j>, свя­занную с n-м атомом, обозначим через Сn. Тогда (11.1) будет иметь вид

Если бы вы знали каждую из амплитуд Сnв данный момент, то, взяв квадраты их модулей, можно было бы получить вероят­ность того, что вы увидите электрон, взглянув в этот момент на атом п.

Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа:

Первый справа коэффициент Е0физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем , Е0; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из (n+1)-й ямки просочится в n-ю ямку, а последний член означает ампли­туду просачивания из (n-1)-й ямки. Как обычно, А считается постоянным (не зависящим от t).

Для полного описания поведения любого состояния |j> надо для каждой из амплитуд Сnиметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состоя­ний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если ко­личество N наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:

§ 2. Состояния определенной энергии

Об электроне в решетке мы теперь уже можем узнать очень многое. Для начала попробуем отыскать состояния определен­ной энергии. Как мы видели в предыдущих главах, это означает, что надо отыскать такой случай, когда все амплитуды меняются с одной частотой, если только они вообще меняются. Мы ищем решение в виде

Комплексное число аnговорит нам о том, какова не зависящая от времени часть амплитуды того, что электроны будут об­наружены возле n-го атома. Если это пробное решение подставить для проверки в уравнения (11.4), то получим

Перед нами бесконечное число уравнений для бесконечного количества неизвестных аn! Ситуация тяжелая!

Но мы знаем, что надо только взять детерминант... нет, по­годите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n-йатом находится в хn, а (n+1)-й— в хn+1. Если расстояние между атомами равно b (как на фиг. 11.1), то хn+1n+b. Взяв начало координат в атоме номер нуль, можно даже получить хn=nb. Уравнение (11.5) можно тогда переписать в виде

а уравнение (11.6) превратится в

Пользуясь тем, что xn+1=xn+b, это выражение можно также записать в виде

Это уравнение немного походит на дифференциальное. Оно говорит, что величина а(х) в точке хnсвязана с той же физиче­ской величиной в соседних точках хn±b. (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения диффе­ренциальных уравнений? Попробуем.

Решения линейных дифференциальных уравнений с по­стоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем

Тогда (11.9) обратится в

Сократим на общий множитель; получим

Два последних члена равняются coskb, так что

E=E0-2Acoskb. (11.13)

Мы обнаружили, что при любом выборе постоянной k имеется решение, энергия которого дается этим уравнением. В зависи­мости от k получаются различные возможные энергии, и каж­дая k соответствует отдельному решению. Решений бесконечно много, но это и не удивительно, ведь мы исходим из беско­нечного числа базисных состояний.

Посмотрим, каков смысл этих решений. Для каждой k уравнение (11.10) дает свои а. Тогда амплитуды обращаются в

причем нужно помнить, что энергия Е также зависит от k в сог­ласии с уравнением (11.13). Множитель дает пространст­венную зависимость амплитуд. Амплитуды при переходе от атома к атому колеблются.

При этом имейте в виду, что колебания амплитуды в прост­ранстве комплексны, модуль ее вблизи любого атома один и тот же, а фаза (в данный момент) от атома к атому сдвигается на ikb. Чтобы можно было видеть, что происходит, поставим у каж­дого атома вертикальную черточку, равную вещественной части амплитуды (фиг. 11.2).

Фиг. 11.2. Изменение вещественной части Сn с хn.

Огибающая этих вертикалей (по­казанная штрихованной линией) является, конечно, косинусо­идой. Мнимая часть Сn это тоже колеблющаяся функция, но она сдвинута по фазе на 90° , так что квадрат модуля (сумма квадратов вещественной и мнимой частей) у всех С один и тот же.

Итак, выбирая k, мы получаем стационарное состояние с определенной энергией Е. И в каждом таком состоянии элект­рону одинаково вероятно оказаться около любого из атомов, никаких преимуществ у одного атома перед другим нет. От атома к атому меняется только фаза. Фазы меняются еще и со време­нем. Из (11.14) следует, что вещественная и мнимая части распространяются по кристаллу, как волны, как веществен­ная и мнимая части выражения

Волна может двигаться либо к положительным, либо к отрица­тельным х, смотря по тому, какой знак выбран для k.

Заметьте, что мы предположили, что поставленное в нашем пробном решении (11.10) число k есть число вещественное. Теперь видно, почему в бесконечной цепочке атомов так и долж­но быть. Пусть k было бы мнимым числом —ik'. Тогда амплитуды аnменялись бы, как , что означало бы, что амплитуда растет все выше и выше, когда х возрастает, или при k' отрицательном, когда х становится большим отрицательным числом. Такой вид решения был бы вполне хорош, если бы цепочка атомов на чем-то кончалась, но в бесконечной цепи атомов это не может быть фи­зическим решением. Оно привело бы к бесконечным амплиту­дам и, стало быть, к бесконечным вероятностям, которые не могут отражать действительного положения вещей. Позже мы встретимся с примером, когда и у мнимых k есть смысл.

Соотношение (11.13) между энергией Е и волновым числом k изображено на фиг. 11.3.

Фиг. 11.3. Энергия стационарных состояний как функция параметра k.

Как следует из этого рисунка, энергия может меняться от Е0-2А при k=0 до Е0+ при k=±p//b. График начерчен для положительных А, при отрица­тельных А кривую пришлось бы перевернуть, но область изменения осталась бы прежней. Существенно то, что в некоторой области, или «полосе» энергий допустимы любые значения энергии; вне полосы энергии быть не может. Из наших пред­положений следует, что если электрон в кристалле находится в стационарном состоянии, энергия его не сможет оказаться вне этой полосы.

Согласно (11.10), меньшие k отвечают более низким энергети­ческим состояниям Е»Е0-2А. Когда k по величине растет (все равно, в положительную или отрицательную сторону), то энергия сперва растет, а потом при kp//b достигает ма­ксимума, как показано на фиг. 11.3. Для k, больших, чем p//b, энергия опять начала бы убывать. Но такие k рассматривать не стоит, они не приведут к каким-либо новым состояниям, а просто повторяют те состояния, которые уже появлялись при меньших k. Вот как в этом можно убедиться. Рассмотрим со­стояние наинизшей энергии, для которого k=0. Тогда при всех хnкоэффициент а (хn) будет один и тот же [см. (11.10)1. Та же самая энергия получилась бы и при k= 2p//b. Тогда из


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.