» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








§ 6. Рассеяние па нерегулярностях решетки

Теперь мы хотим рассмотреть одиночный электрон в не­идеальном кристалле. Наш первоначальный анализ привел к выводу, что у идеальных кристаллов и проводимость идеальна, что электроны могут скользить по кристаллу, как по вакууму, без трения. Одной из самых важных причин, способных прекратить вечное движение электрона, является несовершенство кристалла, какая-то нерегулярность в нем. Допустим, что где-то в кристалле не хватает одного атома, или предположим, что кто-то поставил на место, предназначенное для какого-то атома, совсем не тот атом, какой положено, так что в этом месте все совсем не так, как в прочих местах. Скажем, другая энергия Е0или другая амплитуда А. Как тогда можно будет описать все происходящее?

Для определенности вернемся к одномерному случаю и до­пустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия Е0, как у других атомов. Обозначим эту энергию Е0+F. Что же происходит? Для электрона, который достиг атома «нуль», есть какая-то вероятность того, что он рассеется назад. Если волновой пакет, мчась по кристаллу, достигает места, где все немного иначе, то часть его будет продолжать лететь вперед, а другая отскочит назад. Анализировать такой случай, пользуясь вол­новым пакетом, очень трудно, потому что все меняется во вре­мени. С решениями в виде установившихся состояний работать много легче. Мы обратимся поэтому к стационарным состоя­ниям; мы увидим, что их можно составить из непрерывных волн, состоящих из двух частей — пробегающей и отраженной. В случае трех измерений мы бы назвали отраженную часть рас­сеянной волной, потому что она разбегалась бы во все стороны.

Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n=0 не похоже на остальные. Пятерка уравнений при n=-2,-1, 0, +1 и +2 выглядит так:

Конечно, будут и другие уравнения при |n|>2. Они будут выгля­деть так же, как (11.6).

Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.

Уравнение (11.10) по-прежнему будет служить решением Для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в поло­жительном направлении х. Волна, бегущая в отрицательном направлении х, тоже подошла бы в качестве решения. Мы бы написали

Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:

Это решение представляет комплексную волну с амплитудой а, бегущую в направлении +х, и волну с амплитудой b, бегущую в направлении -х.

Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят аn с nЈ-1, решаются форму­лой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением

E=E0-2Acoskb. (11.30)

Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда ампли­туда b будет, вообще говоря, комплексным числом.

То же самое можно сказать и о решениях аnпри 1. Коэф­фициенты могут стать иными, так что следовало бы писать

Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравне­ниям для аn, кроме средней тройки в (11.28), с помощью сле­дующих пробных решений:

Положение, о котором идет речь, иллюстрируется фиг. 11.6.

Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n=0.

Используя формулы (11.32) для а-1и а+1, можно из сред­ней тройки уравнений (11.28) найти а0 и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая xn=nb):

Вспомните, что (11.30) выражает E через k. Подставьте это значение Е в уравнения и учтите, что

тогда из первого уравнения получится

a0=1+b, (11.34)

а из третьего

a0=g, (11.35)

что согласуется друг с другом только тогда, когда

g=1+b. (11.36)

Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.

Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что

Мы получили полное решение для решетки с одним необычным

атомом.

Вас могло удивить, отчего это проходящая волна оказа­лась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и g числа комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В дей­ствительности «сохранение числа электронов» будет выполнено лишь при условии

|b|2+|g|2=1. (11.38)

Попробуйте показать, что в нашем решении так оно и есть.

§ 7. Захват нерегулярностями решетки

Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n=0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е0+F ниже самого низа полосы (меньше, чем Е0-2А), тогда электрон может оказаться «пойманным» в со­стояние с Е<Е0-2А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k прини­мать мнимые значения. Положим k = ix. Для n<0 и для n>0 у нас опять будут разные решения. Для n>0 допустимое решение могло бы иметь вид

В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n>0 имело бы вид

Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что

А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы

Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона

Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.

Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).

Фиг. 11.7. Относительные вероятности обнаружить захваченный электрон в атом­ных узлах поблизости от примесного ато­ма — ловушки.

С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.