» » » Ричард Фейнман - 8a. Квантовая механика I


Авторские права

Ричард Фейнман - 8a. Квантовая механика I

Здесь можно скачать бесплатно "Ричард Фейнман - 8a. Квантовая механика I" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
8a. Квантовая механика I
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "8a. Квантовая механика I"

Описание и краткое содержание "8a. Квантовая механика I" читать бесплатно онлайн.








Первый вопрос, на который нужно ответить: каковы базис­ные состояния для этой системы? Но вопрос этот поставлен не­правильно. Такой вещи, как единственный базис, не существует, а всякая система базисных состояний, которую вы выберете, не будет единственной. Всегда можно составить новые систе­мы из линейных комбинаций старой. Для базисных состоя­ний всегда есть множество выборов и все они одинаково законны.

Значит, надо спрашивать: не «каков базис?», а «каким его можно выбрать?». И выбрать вы вправе какой угодно, лишь бы вам было удобно.

Обычно лучше всего начинать с базиса, который физи­чески наиболее очевиден. Он не обязательно должен решать какую-то задачу или быть непосредственно важным в каком-то отношении, нет, он в общем должен только облегчать пони­мание того, что происходит.

Мы выбираем следующие базисные состояния:

Состояние 1. И у электрона, и у протона спины смотрят вверх.

Состояние 2. У электрона спин смотрит вверх, а у протона— вниз.

Состояние 3. У электрона спин смотрит вниз, а у протона —

вверх.

Состояние 4. И у электрона, и у протона спины смотрят

вниз.

Для краткой записи этих четырех состояний введем следую­щие обозначения:

Состояние 1: |+ +>; у электрона спин вверх, у протона спин вверх.

Состояние 2: | + ->; у электрона спин вверх,

у протона спин вниз.

Состояние 3: |- +>; у электрона спин вниз, у протона спин вверх.

Состояние 4: |- ->; у электрона спин вниз, у протона спин вниз. (10.1)

Помните, что первый знак плюс или минус относится к элек­трону, второй — к протону. Чтобы эти обозначения были у вас под рукой, они сведены на фиг. 10.1.

Фиг. 10.1. Совокупность базисных состояний

для основного состояния атома водорода.

Эти состояния мы обозначаем | + +>, | + ->> |- +>.

Временами будет удобнее обозначать эти состояния |1>, |2>, |3> и |4>.

Вы можете сказать: «Но частицы взаимодействуют, и, может быть, эти состояния вовсе не являются правильными базисными состояниями. Получается, будто вы рассматриваете обе частицы независимо». Да, действительно! Взаимодействие ставит перед нами вопрос: каков гамильтониан системы? Но вопрос о том, как описать систему, не касается взаимодействия. Что бы мы ни выбрали в качестве базиса, это никак не связано с тем, что слу­чится после. Может оказаться, что атом не способен оставаться в одном из этих базисных состояний, даже если с него все и на­чалось. Но это другой вопрос. Это вопрос о том, как со временем меняются амплитуды в выбранном (фиксированном) базисе. Вы­бирая базисные состояния, мы просто выбираем «единичные векторы» для нашего описания.

Раз уже мы коснулись этого, бросим взгляд на общую проб­лему отыскания совокупности базисных состояний, когда имеет­ся не одна частица, а больше. Вы знаете базисные состояния для одной частицы. Электрон, например, полностью описывается в реальной жизни (не в наших упрощенных случаях, а в реаль­ной жизни) заданием амплитуд пребывания в одном из следующих состояний:

| Электрон спином вверх с импульсом р> или

| Электрон спином вниз с импульсом р>.

В действительности существуют две бесконечные совокупности состояний, по одному на каждое значение р. Значит, сказать, что электронное состояние |y> описано полностью, можно лишь тогда, когда вы знаете все амплитуды

где + и - представляют компоненты момента количества движения вдоль ка­кой-то оси, обычно оси z, a p — вектор импульса. Стало быть, для каждого мыс­лимого импульса должны быть две ампли­туды (дважды бесконечная совокупность базисных состояний). Вот и все, что нужно для описания отдельной частицы.

Таким же образом могут быть написаны базисные состояния, когда частиц не одна, а больше. Например, если надо было бы рассмотреть электрон и протон в более сложном, чем у нас, слу­чае, то базисные состояния могли бы быть следующими: Электрон с импульсом p1 движется спином вверх, а протон с импульсом р2 движется спином вниз. И так далее для других спиновых комбинаций. Если частиц больше двух, идея остается та же. Так что вы видите, что распи­сать возможные базисные состояния на самом деле очень легко. Вопрос только в том, каков гамильтониан.

Нам для изучения основного состояния водорода нет нужды применять полные совокупности базисных состояний для раз­личных импульсов. Мы оговариваем и фиксируем определенные импульсные состояния протона и электрона, когда произносим слова «основное состояние». Детали конфигурации — амплиту­ды для всех импульсных базисных состояний — можно рассчи­тать, но это уже другая задача. А мы сейчас касаемся только влияния спина, так что ограничимся только четырьмя базис­ными состояниями (10.1). Очередной вопрос таков: каков га­мильтониан для этой совокупности состояний?

§ 2. Гамильтониан основного состояния водорода

Через минуту вы это узнаете. Но прежде хочу вам напомнить одну вещь: всякое состояние всегда можно представить в виде линейной комбинации базисных состояний. Для любого состоя­ния |y|> можно написать

Напомним, что полные скобки — это просто комплексные числа, так что их можно обозначить обычным образом через Сi, где i=l, 2, 3 или 4, и записать (10.2) в виде

Задание четверки амплитуд Сi полностью описывает спиновое состояние |y>. Если эта четверка меняется во времени (как это и будет на самом деле), то скорость изменения во времени дается оператором Н^. Задача в том, чтобы найти этот оператор H^ .

Не существует общего правила, как писать гамильтониан атомной системы, и отыскание правильной формулы требует большего искусства, чем отыскание системы базисных состоя­ний. Мы вам смогли дать общее правило, как записывать систему базисных состояний для любой задачи, в которой есть протон и электрон, но описать общий гамильтониан такой комбинации на этом уровне слишком трудно. Вместо этого мы подведем вас к гамильтониану некоторыми эвристическими рассуждениями, и вам придется признать его .правильным, потому что резуль­таты будут согласовываться с экспериментальными наблюде­ниями.

Вспомните, что в предыдущей главе мы смогли описать га­мильтониан отдельной частицы со спином 1/2, применив сигма-матрицы или в точности эквивалентные им сигма-операторы. Свойства операторов сведены в табл. 10.1. Эти операторы, являю­щиеся просто удобным, кратким способом запоминания матрич­ных элементов типа <+|sz|+> были полезны для описания поведения отдельной частицы со спином 1/2. Возникает вопрос, можно ли отыскать аналогичное средство для описания системы с двумя спинами. Да, и очень просто. Вот смотрите. Мы изобре­тем вещь, которую назовем «электрон-сигма» и которую будем представлять векторным оператором se с тремя компонентами sex, sey и sez. Дальше условимся, что когда одна из них действует

Таблица 10.1 · СВОЙСТВА СИГМА-ОПЕРАТОРОВ

на какое-то из наших четырех базисных состояний атома водо­рода, то она действует на один только спин электрона, причем гак, как если бы электрон был один, сам по себе. Пример: чему равно syе|-+>? Поскольку sy , действующее на электрон со спином вниз, дает -i, умноженное на состояние с электроном, у которого спин вверх, то

sey|-+>=-i|++>.

(Когда syе действует на комбинированное состояние, оно пе­реворачивает электрон, не затрагивая протон, и умножает результат на -i.) Действуя на другие состояния, sеудаст

Напомним еще раз, что оператор sе действует только на первый спиновый символ, т. е. на спин электрона.

Теперь определим соответствующий оператор «протон-сиг­ма» для спина протона. Три его компоненты spx, spy, spz, действуют так же, как и sе, но только на протонный спин. Например, если spxбудет действовать на каждое из четырех базисных со­стояний, то получится (опять с помощью табл. 10.1)

Как видите, ничего трудного. В общем случае могут встретиться вещи и посложнее. Например, произведение операторов seyspz. Когда имеется такое произведение, то сначала делается то, что хочет правый оператор, а потом — чего требует левый. Например,


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "8a. Квантовая механика I"

Книги похожие на "8a. Квантовая механика I" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 8a. Квантовая механика I"

Отзывы читателей о книге "8a. Квантовая механика I", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.