» » » Ричард Фейнман - 8a. Квантовая механика I


Авторские права

Ричард Фейнман - 8a. Квантовая механика I

Здесь можно скачать бесплатно "Ричард Фейнман - 8a. Квантовая механика I" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
8a. Квантовая механика I
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "8a. Квантовая механика I"

Описание и краткое содержание "8a. Квантовая механика I" читать бесплатно онлайн.








В гл. 42, § 5 (вып. 4) мы говорили о связи между поглоще­нием света, вынужденным испусканием и самопроизвольным испусканием в терминах введенных Эйнштейном коэффициентов А и В. Здесь наконец-то в наших руках появляется квантовомеханическая процедура для подсчета этих коэффициентов. То, что мы обозначили Р (I®II) для нашей аммиачной двухуровневой молекулы, в точности соответствует коэффициенту поглощения Bnmв эйнштейновской теории излучения. Из-за сложности молекулы аммиака — слишком трудной для рас­чета — нам пришлось взять матричный элемент <II|H|I> в виде mx и говорить, что m извлекается из опыта. Для более про­стых атомных систем величину mmn, отвечающую к произвольному переходу, можно подсчитать, исходя из определения

где Нmn это матричный элемент гамильтониана, учитываю­щего влияние слабого электрического поля. Величина mmn, вычисленная таким способом, называется электрическим дипольным матричным элементом, Квантовомеханическая тео­рия поглощения и испускания света сводится тем самым к расчету этих матричных элементов для тех или иных атомных систем.

Итак, изучение простых систем с двумя состояниями (двух­уровневых) привело нас к пониманию общей проблемы поглощения и испускания света.

* Теперь мы опять будем писать | I> и | II> вместо |yI> и |yII>. Вы должны вспомнить, что настоящие состояния |yI> и |yII> суть энергетические базисные состояния, умноженные на соответствующий экспоненциальный множитель.

* Например, как легко убедиться, одно из допустимых решений имеет вид

* Очень жаль, но нам придется ввести новое обозначение. Раз бук­вы р и Е заняты у нас импульсом и энергией, то мы поостережемся опять обозначать ими дипольный момент и электрическое поле. Напомним, что в этом параграфе m означает электрический дипольный момент.

* В дальнейшем полезно (и читая, и произнося вслух) отличать арабские 1 и 2 и римские I и II. Мы считаем, что удобно для арабских, цифр резервировать названия «один» и «два», а I и II читать как «первый», «второй».

 

 

Глава 8

ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями

§ 1. Молекулярный ион водорода

§ 2. Ядерные силы

§ 3. Молекула водорода

§ 4.Молекула бензола

§ 5. Красители

§ 6.Гамильтониан частицы со спи­ном 1/2 в магнит­ном поле

§ 7.Вращающийся электрон в магнитном поле

§ 1. Молекулярный ион водорода

В предыдущей главе мы обсудили некото­рые свойства молекулы аммиака в предположении, что это система о двух состояниях (или двухуровневая система). На самом деле, конечно, это не так — у нее есть множество состояний: вращения, колебания, перемещения и т. д., но в каждом из этих состояний движе­ния следует говорить о паре внутренних со­стояний из-за того, что атом азота может быть переброшен с одной стороны плоскости трех атомов водорода на другую. Сейчас мы рас­смотрим другие примеры систем, которые в том или ином приближении можно будет считать системами с двумя состояниями. Многое здесь будет приближенным, потому что всегда име­ется множество других состояний, и в более точном анализе их следовало бы учитывать. Но в каждом из этих примеров мы окажемся в силах очень многое понять, рассуждая толь­ко о двух состояниях.

Раз мы будем иметь дело только с двух­уровневыми системами, то нужный нам га­мильтониан будет выглядеть так же, как и в предыдущей главе. Когда гамильтониан не зависит от времени, то известно, что имеются два стационарных состояния с определенными (и обычно разными) энергиями. В общем слу­чае, однако, мы будем начинать наш анализ с выбора базисных состояний (не обязательно этих стационарных состояний), таких, которые, скажем, имеют другой простой физический смысл. Тогда стационарные состояния систе­мы будут представлены линейной комбинацией этих базисных состояний.

Для удобства подытожим важнейшие уравнения, выведенные в гл. 7, Пусть первоначально в качестве базисных состояний были приняты |1> и |2>. Тогда любое состояние |y> пред­ставляется их линейной комбинацией:

Амплитуды Сi (под этим подразумеваются как C1так и С2) удовлетворяют двум линейным дифференциальным уравнениям

где и i, и j принимают значения 1 и 2.

Когда члены гамильтониана Hij не зависят от t, то два состояния с определенной энергией (стационарные), которые мы обозначим

обладают энергиями

Для каждого из этих состояний оба С имеют одинаковую зависимость от времени. Векторы состояний |I> и |II>, кото­рые отвечают стационарным состояниям, связаны с нашими первоначальными базисными состояниями |1> и |2>формулами

Здесь а —комплексные постоянные, удовлетворяющие равен­ствам

Если H11 и H22 между собой равны, скажем оба равны Е0, а H12=H21=-А, то EI=E0+A, ЕII0-А, и состоя­ния | I> и |II> особенно просты:

Эти результаты мы хотим теперь использовать, чтобы рас­смотреть ряд интересных примеров, взятых из химии и физики. Первый пример — это ион молекулы водорода. Положительно ионизированная молекула водорода состоит из двух протонов и одного электрона, как-то бегающего вокруг них. Каких состояний можно ожидать для этой системы, если расстояние между протонами велико? Ответ вполне ясен: электрон распо­ложится вплотную к одному протону и образует атом водорода в его наинизшем состоянии, а другой протон останется одиноч­кой, положительным ионом. Значит, когда два протона удале­ны друг от друга, то можно себе наглядно представить одно физическое состояние, в котором электрон «придан» одному из протонов. Существует, естественно, и другое, симметричное первому состояние, в котором электрон находится возле вто­рого протона, а ионом оказывается первый протон. Эту пару состояний мы и сделаем базисными, обозначив их |1> и |2>. Они показаны на фиг. 8.1.

Фиг. 8.1. Совокупность базисных состояний для двух протонов и электрона.

Конечно, на самом деле у электрона возле протона имеется множество состояний, потому что их комбинация может существовать в виде одного из возбуждён­ных состояний атома водорода. Но нас сейчас не интересует это разнообразие состояний, мы будем рассматривать лишь случай, когда атом водорода пребывает в наинизшем состоя­нии — своем основном состоянии,— и пренебрежем на время спином электрона. Мы просто предположим, что для всех на­ших состояний спин электрона направлен вверх по оси z.

Чтобы убрать электрон из атома водорода, требуется 13,6 эв энергии. Столько же энергии — очень много по нашим тепе­решним масштабам — понадобится и на то, чтобы электрон ока­зался на полпути между протонами (коль скоро сами протоны сильно удалены друг от друга). Так что по классическим поня­тиям электрону немыслимо перескочить от одного протона к другому. Однако в квантовой механике это возможно, хоть и не очень вероятно. Существует некая малая амплитуда того, что электрон уйдет от одного протона к другому. Тогда в пер­вом приближении каждое из наших базисных состояний |1> и |2> будет иметь энергию Е0, равную просто сумме энергий атома водорода и протона. Матричные элементы Н11и H22 гамильтониана мы можем принять приближенно равными Е0. Другие матричные элементы Н12и Н21, представляющие собой амплитуды перехода электрона туда и обратно, мы опять за­пишем в виде -А.

Вы видите, что это та же игра, в какую мы играли в послед­них двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщеп­ляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность пере­хода, тем больше расщепление. Стало быть, два уровня энер­гии системы равны Е0 и Е0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "8a. Квантовая механика I"

Книги похожие на "8a. Квантовая механика I" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 8a. Квантовая механика I"

Отзывы читателей о книге "8a. Квантовая механика I", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.