» » » Александр Филиппов - Многоликий солитон


Авторские права

Александр Филиппов - Многоликий солитон

Здесь можно скачать бесплатно "Александр Филиппов - Многоликий солитон" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Филиппов - Многоликий солитон
Рейтинг:
Название:
Многоликий солитон
Издательство:
Наука, гл. ред. физ.-мат. лит.
Жанр:
Год:
1990
ISBN:
5-02-014405-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Многоликий солитон"

Описание и краткое содержание "Многоликий солитон" читать бесплатно онлайн.



Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.






*) Иногда Ф. Й. Герстнера путают с его сыном, Ф. А. Герстнером, несколько лет жившим в России. Под его руководством в 18З6—18З7 гг. была построена первая в России железная дорога (из Петербурга в Царское Село).

В волне Герстнера (рис. 1.1), которая может образоваться только на «глубокой воде», когда длина волны много меньше глубины сосуда, частицы жидкости движутся по окружностям.



Волна Герстнера — первая изученная волна несинусоидальной формы. Из того, что частицы жидкости движутся по окружностям, можно заключить, что поверхность воды имеет форму циклоиды (от греч. «киклос» — круг и «эйдос» — форма), т. е. кривой, которую описывает какая-нибудь точка колеса, катящегося по ровной дороге. Иногда эту кривую называют трохоидой (от греч. «трохос» — колесо), а волны Герстнера трохоидальными *). Только для очень мелких волн, когда высота волн становится много меньше их длины, циклоида становится похожей на синусоиду, и волна Герстнера превращается в синусоидальную. Хотя при этом частицы воды и мало отклоняются от своих положений равновесия, движутся они все равно по окружностям, а не качаются вверх-вниз, как полагал Ньютон. Надо заметить, что Ньютон ясно сознавал ошибочность такого допущения, но счел возможным воспользоваться им для грубой приближенной оценки скорости распространения волны: «Все происходит таким образом при предположении, что частицы воды поднимаются и опускаются по отвесным прямым линиям, но их движение вверх и вниз на самом деле происходит не по прямой, а вернее по кругу, поэтому я утверждаю, что время дается этим положениям лишь приближенно». Здесь «время» — период колебаний Т в каждой точке; скорость волны υ = λ/Т, где λ — длина волны. Ньютон показал, что скорость волны на воде пропорциональна . В дальнейшем мы увидим, что это правильный результат, и найдем коэффициент пропорциональности, который был известен Ньютону лишь приближенно.

*) Мы будем называть циклоидами кривые, описываемые точками, лежащими на ободе колеса, а трохоидами кривые, описываемые точками между ободом и осью.

Братья Веберы изучают волны

Открытие Герстнера не прошло незамеченным. Надо сказать, что он сам продолжал интересоваться волнами и свою теорию применял для практических расчетов плотин и дамб. Вскоре было положено начало и лабораторному исследованию волн на воде. Это сделали молодые братья Веберы.

Старший брат Эрнст Вебер (1795—1878) сделал впоследствии важные открытия в анатомии и физиологии, в особенности в физиологии нервной системы. Вильгельм Вебер (1804—1891) стал знаменитым физиком и многолетним сотрудником «контроля математиков» К. Гaуссa в исследованиях по физике. По предложению и при содействии Гаусса он основал в Геттингенском университете первую в мире физическую, лабораторию (1831 г.). Более всего известны его работы по электричеству и магнетизму, а также электромагнитная теория Вебера, которая была позднее вытеснена теорией Максвелла. Он одним из первых (1846 г.) ввел представление об отдельных частичках электрического вещества «электрических массах» и предложил первую модель атома, в которой атом уподоблялся планетарной модели Солнечной системы. Вебер также разработал основанную на идее Фарадея теорию элементарных магнитиков в веществе и изобрел несколько физических приборов, которые для своего времени были весьма совершенными.

Эрнст, Вильгельм и младший их брат Эдуард Веберы серьезно заинтересовались волнами. Они были настоящими экспериментаторами, и простые наблюдения над волнами, которые можно видеть «на каждом шагу», их не могли удовлетворить. Поэтому они сделали простой прибор (лоток Веберов), который с разными усовершенствованиями до сих пор используется для опытов с волнами на воде. Построив длинный ящик со стеклянной боковой стенкой и нехитрые приспособления для возбуждения волн, они провели обширные наблюдения различных волн, в том числе и волн Герстнера, теорию которого они таким образом проверили на опыте. Результаты этих наблюдений они опубликовали в 1825 г. в книге под названием «Учение о волнах, основанное на опытах». Это было первое экспериментальное исследование, в котором систематически изучались волны разной формы, скорость их распространения, соотношения между длиной и высотой волны и т. д. Способы наблюдения были очень простые, остроумные и довольно эффективные. Например, для определения формы поверхности волны они опускали в ванну матовую стеклянную пластину. Когда волна доходит до середины пластины, ее быстро выдергивают; при этом передняя часть волны совершенно правильно отпечатывается на пластине. Чтобы наблюдать пути колеблющихся в волне частиц, они заполняли лоток мутной водой из реки Заале и наблюдали движения невооруженным глазом или с помощью слабого микроскопа. Таким способом они определили не только форму, но и размеры траекторий частиц. Так, они обнаружили, что траектории вблизи поверхности близки к окружностям, а при приближении к дну сплющиваются в эллипсы; вблизи самого дна частицы движутся горизонтально. Веберы открыли много интересных свойств волны на воде и других жидкостях. 

О пользе теории волн

Никто не ищи своего, но каждый пользы другого.

Апостол Павел

Независимо от этого происходила разработка идей Лагранжа, связанная в основном с именами французских математиков Огюстена Луи Коши (1789—1857) и Симона Дени Пуассона (1781—1840). В этой работе принял участие и наш соотечественник Михаил Васильевич Остроградский (1801—1862). Эти знаменитые ученые много сделали для науки, их имена носят многочисленные уравнения, теоремы и формулы. Менее известны их работы по математической теории волн малой амплитуды на поверхности воды. Теорию таких волн можно применять к некоторым штормовым волнам на море, к движению судов, к волнам на отмелях и вблизи волноломов и т. д. Ценность математической теории таких волн для инженерной практики очевидна. Но в то же время математические методы, разработанные для решения этих практических задач, были позже применены и к решению совсем других, далеких от гидромеханики проблем. Мы еще не раз встретимся с подобными примерами «всеядности» математики и практической пользы от решения математических задач, на первый взгляд относящихся к «чистой» («бесполезной») математике.

Здесь автору трудно удержаться от небольшого отступления, посвященного одному эпизоду, связанному с появлением единственной работы Остроградского по теории волн. Эта математическая работа не только принесла отдаленную пользу науке и технике, но и оказала непосредственное и важное влияние на судьбу ее автора, что случается не так уж часто. Вот как излагает этот эпизод выдающийся русский кораблестроитель, математик и инженер, академик Алексей Николаевич Крылов (1863—1945). «В 1815 г. Парижская академия наук поставила теорию волн темою для «Большого приза по математике». В конкурсе приняли участие Коши и Пуассон. Премирован был обширный (около 300 стр.) мемуар Коши, мемуар Пуассона заслужил почетный отзыв… В это же время (1822 г.) М. В. Остроградский, задолжавший вследствие задержки в высылке (из дома) денег содержателю гостиницы, был им посажен в Клиши (долговая тюрьма в Париже). Здесь он написал «Теорию волн в сосуде цилиндрической формы» И послал свой мемуар Коши, который не только одобрил эту работу и представил ее Парижской академии наук для напечатания в ее трудах, но и, не будучи богатым, выкупил Остроградского из долговой тюрьмы и рекомендовал его на должность учителя математики в один из лицеев в Париже. Ряд математических работ Остроградского обратил на него внимание С.-Петербургской академии наук, и в 1828 г. он был избран в ее адъюнкты, а затем и в ординарные академики, имея лишь аттестат студента Харьковского университета, уволенного, не окончив курс».

Добавим к этому, что Остроградский родился в небогатой семье украинских дворян, в 16 лет он поступил на физико-математический факультет Харьковского университета по воле отца, вопреки собственным желаниям (он хотел стать военным), но очень скоро проявились его выдающиеся способности к математике. В 1820 г. он с отличием сдал экзамены на кандидата, однако министр народного просвещения и духовных дел князь А. Н. Голицын не только отказал ему в присуждении степени кандидата, но и лишил ранее выданного диплома об окончании университета. Основанием послужили обвинения его в «безбожии и вольнодумстве», в том, что он «не посещал не только лекции философии, но и богопознания и христианского учения». В результате Остроградский уехал в Париж, где усердно посещал лекции Лапласа, Коши, Пуассона, Фурье, Ампера и других выдающихся ученых. Впоследствии Остроградский стал член-корреспондентом Парижской академии наук, членом Туринской, Римской и Американской академий и т. д. В 1828 г. Остроградский вернулся в Россию, в Петербург, где по личному повелению Николая I был взят под секретный надзор полиции *). Это обстоятельство не помешало, однако, карьере Остроградского, постепенно занявшего весьма высокое положение.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Многоликий солитон"

Книги похожие на "Многоликий солитон" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Филиппов

Александр Филиппов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Филиппов - Многоликий солитон"

Отзывы читателей о книге "Многоликий солитон", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.