» » » Александр Филиппов - Многоликий солитон


Авторские права

Александр Филиппов - Многоликий солитон

Здесь можно скачать бесплатно "Александр Филиппов - Многоликий солитон" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Филиппов - Многоликий солитон
Рейтинг:
Название:
Многоликий солитон
Издательство:
Наука, гл. ред. физ.-мат. лит.
Жанр:
Год:
1990
ISBN:
5-02-014405-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Многоликий солитон"

Описание и краткое содержание "Многоликий солитон" читать бесплатно онлайн.



Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.






2. Найдем теперь геометрическим построением решение уравнения (4.6). Обозначим = ψ (рис. ПЗ).



Отсюда очевидно, что ψ = (π - φ)/4 и tg ψ = exp(-S)/exp(S) = exp(-2S). Приращение площади ΔS при малом смещении точки А по гиперболе можно записать как площадь малого сектора с радиусом (ОА)  (ОА') и углом -Δψ = , т. е. ΔS = -½Δψ·(ОА)2. Так как (ОА) = ехр(S)/cos ψ, то отсюда следует, что



Возвращаясь к углу φ, находим, что



Чтобы получить отсюда уравнение (4.6), достаточно положить S = ½ω0t. Тогда φ' = 2ω0cos(φ/2), а условие tgψ = exp(-2S) дает



Мы показали, что угол φ(t) зависимость которого от t определена этим уравнением, удовлетворяет уравнение (4.6). Общее решение уравнения (4.6) можно найти сдвигом начала отсчета времени, т. е. заменой в формуле (4.9) t на t + t0. Если угол φ близок к π, то для α = (π - φ)/4 получим из (4.9), что α = ехр(-ω0t) (так как tg α α). Таким образом, α удовлетворяет уравнению (4.7).

3. В заключение приведем некоторые солитонные уравнения и их простейшие решения.

Уравнение КдФ написано на с. 217, а его солитонное решение на с. 222, формулы (7.1), (7.2). Обычно это уравнение записывают для безразмерной функции u = 3y/4h от безразмерных переменных



где точка обозначает производную по Т, а штрих — производную по X. Солитонное решение в новых переменных

u = 6k/ch2 [k (Х - VT)],

где k — произвольное число, а V = 1 + 4k2 (сравните это с (7.1) и (7.2)). Если заменить в уравнении КдФ и u2 на uЗ, то получим модифицированное уравнение КдФ (или мКдФ), также часто встречающееся в приложениях. Его солитонное решение имеет простой вид

u = k/ch [k (Х - VT)], V = 1 + k2.

Уравнение «синус-Гордона» приведено в тексте на с. 181, формула (6.11). Обычно его записывают для функции u = π + φ от безразмерных переменных Т = ω0t и Х = ω0x/v0:



Как следует из (6.5), его односолитонное решение имеет вид



Два солитона описываются решением

u = 4 aгctg [V sh (βX)/ch (βVT)],

солитон-антисолитон решением

u = 4 aгctg [V-1 sh (βVT)/ch (βХ)],

а бризер есть

u = 4 aгctg [α sin (ЬТ)/Ь сh (αХ)], α2 + Ь2 = 1.

Приведем еще солитонное решение уравнений цепочки Тоды:



где un — безразмерные координаты частиц в цепочке. Солитонное решение этих уравнений описывается формулами



α — произвольное число. Заметим, что дискретизованное уравнение КдФ имеет вид



а уравнения Тоды в континуальном пределе приводят к уравнению Буссинеска



которое иногда называют уравнением нелинейной струны.

Наконец, полезно знать простейшее уравнение нелинейной диффузии (Хаксли)



и его решение в виде уединенной волны



С другими уравнениями и их солитонными решениями читатель может познакомиться по книгам: Солитоны в действии/Под ред. К. Лонгрена, Э. Скотта. — М.: Мир, 1981; Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М.: Мир, 1987. В этих книгах описаны и многие физические приложения теории солитонов.

4. В этой книге мы не касались математической теории солитонов. Ее основы были заложены в конце 60-х — начале 70-х годов. Развитие математической теории солитонов началось с работы Гарднера, Грина, Крускала и Миуры, в которой был предложен метод решения уравнения КдФ (1967 г.). В следующем году П. Лакс существенно обобщил этот метод. В 1971 г. В. Е. Захаров и А. Б. Шабат распространили идеи ГГKM на другие типы уравнений, в частности на нелинейное уравнение Шредингера. В том же году В. Е. Захаров и Л. Д. Фаддеев доказали полную интегрируемость уравнения КдФ, рассматривая его как бесконечномерную гамильтонову систему уравнений. Во всех этих работах разрабатывался так называемый метод «обратной задачи рассеяния», в котором решение нелинейных уравнений сводилось к решению некоторых линейных уравнений, связанных с квантово-механической теорией рассеяния. В том же году Р. Хирота предложил прямой метод построения солитонных решений различных уравнений, использующий более простой математический аппарат. С работы Абловица, Каупа, Ньюэлла и Сигура (1973 г.) началась систематизация интегрируемых уравнений и классификация различных типов солитонов, в частности была доказана полная интегрируемость уравнения «синус-Гордона» и начались поиски других солитонов. В 1974 — 1975 гг. был найден общий подход к построению точных периодических решений уравнения КдФ (С. П. Новиков и др.), опирающийся на глубокие математические результаты Римана, Абеля и Якоби. Развитие этого подхода недавно привело к установлению нетривиальных связей между математической теорией солитонов и теорией струн.

Более полный обзор истории и современного развития математической теории солитонов можно найти в книгах: Солитоны/Под ред. Р. Буллафа, Ф. Кодри. — М.: Мир, 1983; Ньюэлл А. Солитоны в математике и физике. — М.: Мир, 1989.

В книге Ньюэлла отражены современные взгляды на теорию солитонов, согласно которым наиболее интересны не отдельные солитонные решения нелинейных уравнений и даже не сами эти уравнения. Наибольший интерес представляют связи между различными на первый взгляд классами солитонов, их глубокое внутреннее родство. Изучение этих связей выявляет удивительную универсальность и глубину идей и методов теории солитонов. Последовательное изложение математической теории солитонов, доступное читателям с хорошей математической подготовкой, можно найти в книгах: Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов. — М.: Наука, 1980; Тахтаджян, Л. А., Фаддеев Л. Д. Гамильтонов подход в теории солитонов. — М.: Наука, 1986.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Многоликий солитон"

Книги похожие на "Многоликий солитон" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Филиппов

Александр Филиппов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Филиппов - Многоликий солитон"

Отзывы читателей о книге "Многоликий солитон", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.