» » » Александр Филиппов - Многоликий солитон


Авторские права

Александр Филиппов - Многоликий солитон

Здесь можно скачать бесплатно "Александр Филиппов - Многоликий солитон" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Филиппов - Многоликий солитон
Рейтинг:
Название:
Многоликий солитон
Издательство:
Наука, гл. ред. физ.-мат. лит.
Жанр:
Год:
1990
ISBN:
5-02-014405-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Многоликий солитон"

Описание и краткое содержание "Многоликий солитон" читать бесплатно онлайн.



Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.






Вернул частицы в теорию Г. А. Лоренц в своей «Теории электронов». Лоренцеву варианту теории электромагнитных явлений была суждена долгая жизнь. Теория электронов привела к созданию теории относительности. Ее применение к атомам породило квантовую механику, а впоследствии и квантовую электродинамику (в которой квантованию подвергались не только уровни энергии атомов, но и само электромагнитное поле). Даже квантование электронного поля (электроны и позитроны — кванты этого поля) не потребовало принципиальных изменений в картине мира Максвелла—Лоренца. Атомы состоят из ядер и электронов, связанных электромагнитными взаимодействиями. Силы, связывающие атомы в молекулы, также удалось объяснить в рамках квантовой механики.

Правда, атомные ядра оказались более сложными объектами, чем точечные, бесструктурные (элементарные) электроны, но постепенно выяснилось, что они состоят из протонов и нейтронов, которые также можно считать элементарными. Эта простая и стройная картина осложнялась тем обстоятельством, что электромагнитные силы не могли связать нейтроны и протоны в ядрах. Все попытки найти объяснение ядерных сил, «не измышляя» гипотез, неизменно терпели неудачу, и в 1935 г. молодой японский физик Хидеки Юкава сделал смелый шаг — он предположил, что существует переносчик ядерного взаимодействия, который он называл мезоном. Мезон был открыт на опыте лишь в 1947 г., но стройная концепция Юкавы, объяснявшая важнейшие факты физики атомного ядра, быстро завоевала признание. Появилось новое, ядерное взаимодействие, в сто-тысячу раз более сильное, чем электромагнитное и действующее на очень малых расстояниях, порядка 10-13 см. (Радиус действия сил, переносимых частицей с массой m, равен комптоновской длине волны /, масса мезона Юкавы, обычно называемого π-мезоном, равна 2,5·10-25 г.)

В 1934 г. Э. Ферми ввел в теорию еще одно взаимодействие, ответственное за радиоактивный распад нейтрона. Оно намного слабее электромагнитного и его радиус действия меньше 10-15 см. Первоначально это взаимодействие мыслилось как «контактное», с нулевым радиусом действия. Постепенно, однако, выяснилось, что при нулевом радиусе действия в теории неизбежно возникают внутренние противоречия и теоретики начали размышлять о возможных переносчиках слабого взаимодействия — «слабых» мезонах с большой массой, определяющей малый радиус действия слабых сил. Тем временем количество элементарных частиц, открытых на ускорителях, быстро возрастало. Увеличивалось и число разнообразных процессов с их участием. Однако во всех процессах просматривались важные закономерности.

Все процессы удавалось разделить на три группы: сильные, слабые и электромагнитные. Существенное различие между ними проявлялось не только в силе и радиусе взаимодействия, но и в том, что электромагнитные и слабые взаимодействия оказались «универсальными» в том смысле, что между различными процессами взаимодействий и взаимных превращений частиц удавалось находить простые соотношении (симметрии). Между сильными процессами также существовали некоторые соотношения симметрии, но они, как правило, были разрушены до такой степени, что об универсальности не было и речи. Возникла таким образом, гипотеза, что слабое взаимодействие устроено подобно электромагнитному, но только «слабые фотоны» — их назвали W-мезонами (W — от англ. weak, т. е. слабый) — весьма массивны (чтобы объяснить короткодействие слабых сил) и электрически заряжены. Позднее для объяснения универсальности пришлось добавить и нейтральный «слабый фотон», но это многим не нравилось, так как для объяснения наблюдаемых данных можно было обойтись заряженными W-мезонами. Несмотря на некоторые теоретические трудности таких теорий слабого взаимодействия, они получили довольно широкое признание.

Сложнее обстояло дело с сильными взаимодействиями. Их также пытались устроить наподобие электромагнитных взаимодействий, но с «сильными фотонами» (массивными и заряженными), однако это не привело к успеху до тех пор, пока М. Гелл-Манн и Г. Цвейг не изобрели кварки. Слово «изобрели» по отношению к кваркам вполне уместно, так как они не наблюдались на опыте, и существуют весьма серьезные основания думать, что они вообще ненаблюдаемы, никогда не появляются в свободном состоянии. Сначала думали, что кварки просто настолько массивны, что их нельзя получить на современных ускорителях. Позднее, однако, была предложена теория сильного взаимодействия, весьма похожая на электродинамику, но более сложная, в которой силы, связывающие кварки, при их удалении друг от друга настолько быстро нарастают, что кварки никогда не могут разлететься. В этой теории кварки и мезоны переносящие взаимодействие (их называют глюонами, от английского слова glue, т. е. клей), обладают неким новым зарядом, который назвали «цветом» (в связи с тем, что этот заряд может принимать три различных значения). Глюоны, подобно фотонам, не имеют массы, но сильно взаимодействуют между собой. По этой причине описывающие их уравнения нелинейны, это — уже упоминавшиеся уравнения Янга—Миллса. Теория кварков и глюонов называется квантовой хромодинамикой (КХД). Строго говоря, невозможность наблюдения кварков и глюонов пока не доказана, но весьма правдоподобна, мы обсудим это чуть позже.

Из-за того что «слабые» мезоны массивны, слабое взаимодействие казалось не очень похожим на электромагнитное. Тем не менее С. Вайнбергу, Ш. Глэшоу и А. Саламу удалось объединить его с электромагнитным с помощью все той же теории Янга—Миллса. Теория объединенного электромагнитно-слабого взаимодействия блестяще подтвердилась — в экспериментах на ускорителях были открыты заряженные и нейтральные «слабые фотоны». Заряженные называют W-бозонами, а нейтральные — это Z-бозон и фотон (термин «бозон» напоминает, что эти частицы не состоят из кварков, мезонами обычно теперь называют связанные состояния кварков и антикварков). В этой теории естественно объясняется интенсивность, радиус действия и другие свойства слабого взаимодействия. При этом на малых расстояниях, меньших комптоновской длины волны W- и Z-бозонов, 10-16 см, слабое и электромагнитное взаимодействия неразличимы, а на больших расстояниях «выживает» лишь электродинамика Максвелла—Лоренца.

Естественно возникла мысль, что на еще меньших расстояниях возможно объединение всех трех взаимодействий. Оказалось, однако, что эти расстояния не просто малы, а фантастически малы, меньше 10-28 см. Проникнуть на столь малые расстояния с помощью ускорителей невозможно. Доступны проверке лишь некоторые следствия таких теорий, например упоминавшееся выше предсказание распада протона и объяснение происхождения электромагнитно-слабого взаимодействия. В этих теориях, называемых теориями Великого объединения (ТВО), предсказываются также весьма необычные гигантские солитоны — космические струны, представляющие собой тонкие вихревые трубки, длина которых сравнима с размером галактики. Эти трубки похожи на абрикосовские вихри, но внутри них сосредоточены другие поля.

Некоторые предсказания ТВО оправдались; ясно, что теоретическая мысль движется в правильном направлении. Однако в ТВО есть много внутренних проблем, а главное, совершенно в стороне осталось гравитационное взаимодействие, без которого система мира не может быть полной. Во всех описанных теориях, объединенных в ТВО, вещество существует в виде фермионов (кварки, лептоны), а взаимодействие переносится бозонами Янга—Миллса (глюоны, W- и Z-бозоны). Теория же гравитации устроена совершенно по-другому, так как переносчики гравитационного взаимодействия не похожи на бозоны Янга—Миллса (понять это можно, вспомнив, что не существует гравитационного заряда, а значит, и столь любимой фантастами антигравитации). На первый взгляд, никакой возможности включить в единую схему гравитацию не видно. Однако теоретики ХХ в. не менее изобретательны, чем их великие предшественники. Возможный выход из, по-видимому, без выходной ситуации нашелся.

Еще в начале этого столетия знакомый нам Дж. Дж. Томсон пытался построить довольно необычную модель взаимодействия электронов. По его мысли, между движущимися элементарными зарядами вытягивается нить, внутри которой сосредоточено электрическое и магнитное поле. Вне этой нити электромагнитное поле равно нулю. Нить может колебаться и вытягиваться, энергия передается колебаниями нити. Он и его последователи безуспешно пытались найти соответствующие решения уравнений Максвелла. Сегодня ясно, почему это не удалось. В сущности, была сделана попытка получить абрикосовский вихрь в вакууме. Но для образования такого вихря «вакуум» должен обладать весьма сложными свойствами, он должен быть похож на сверхпроводник второго рода для электрических и магнитных зарядов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Многоликий солитон"

Книги похожие на "Многоликий солитон" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Филиппов

Александр Филиппов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Филиппов - Многоликий солитон"

Отзывы читателей о книге "Многоликий солитон", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.