» » » » Георг Гегель - НАУКА ЛОГИКИ. том 1


Авторские права

Георг Гегель - НАУКА ЛОГИКИ. том 1

Здесь можно скачать бесплатно "Георг Гегель - НАУКА ЛОГИКИ. том 1" в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
НАУКА ЛОГИКИ. том 1
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "НАУКА ЛОГИКИ. том 1"

Описание и краткое содержание "НАУКА ЛОГИКИ. том 1" читать бесплатно онлайн.








Определенное количество, полностью положенное в этих определениях, есть число. Полная положенность заключается в наличном бытии границы как множества и, стало быть, в ее отличности от единицы. Число представляется поэтому дискретной величиной, но оно обладает также и непрерывностью в виде единицы. Оно поэтому и есть определенное количество в совершенной определенности, так как в числе граница выступает в виде определенного множества, имеющего своим принципом одно, т. е. нечто безоговорочно определенное. Непрерывность, в каковой одно есть лишь в себе, как снятое (положенное как единица), есть форма неопределенности.

Определенное количество, лишь как таковое, ограничено вообще; его граница есть его абстрактная, простая определенность. Но поскольку оно есть число, эта граница положена как многообразная в себе самой. Число содержит в себе те многие одни, которые составляют его наличное бытие, но содержит их не неопределенным образом, а определенность границы имеет место именно в нем; граница исключает другое наличное бытие, т. е. другие многие, и объемлемые ею одни суть некоторое определенное множество, численность*, в отношении которой как дискретности, как она есть в числе, другим служит единица, его непрерывность. Численность и единица составляют моменты числа.

Что касается численности, то следует еще рассмотреть ближе, каким образом многие одни, из которых она состоит, заключены в границе. Относительно численности правильно выражаются, говоря, что она состоит из многих, ибо одни находятся в ней не как снятые, а суть в ней, только как положенные вместе с исключающей границей, к которой они относятся безразлично. Но граница не относится безразлично к ним. При рассмотрении нами наличного бытия отношение к нему границы оказалось ближайшим образом таким, что наличное бытие как утвердительное оставалось по сю сторону своей границы, а последняя, отрицание, находилась вне его, у его крал; точно так же во многих одних прерыв их и исключение других одних выступает как некоторое определение, которое имеет место вне объемлемых одних. Но там получился вывод, что граница пронизывает наличное бытие, простирается столь же далеко, как последнее, и что нечто вследствие этого ограничено по своему определению, т. е. конечно. – В области числовой количественности мы представляем себе, например, сто так, что только сотое одно ограничивает многие таким образом, что они составляют' сто. С одной стороны, это правильно; но, с другой стороны, среди ста одних никакое из них не обладает преимуществом, так как они только одинаковы; каждое из них есть в такой же мере сотое, как и другие; все они, следовательно, принадлежат к той границе, благодаря которой данное число есть сто; для получения своей определенности последнее не может обойтись ни без одного из них; прочие одни, следовательно, не составляют в сравнении с сотым одним такого наличного бытия, которое находилось бы вне границы или лишь внутри ее, вообще было бы отлично от нее. Численность не есть поэтому некоторое множество в противоположность объемлющему, ограничивающему одному, а сама составляет это ограничивание, которое есть некоторое определенное количество; многие образуют одно число, одну двойку, один десяток, одну сотню и т. д.

Итак, ограничивающее одно есть определенность в отношении другого, отличение данного числа от других. Но это отличение не становится качественной определенностью, а остается количественным, имеет место лишь в сравнивающей внешней рефлексии. Число как одно остается обращенным назад к себе и безразличным к другим. Это безразличие числа к другим есть его существенное определение; оно составляет его определенность в себе, но вместе с тем и его собственную внешность. – Число есть, таким образом, нумерическое одно как абсолютно определенное, которое вместе с тем обладает формой простой непосредственности и для которого поэтому соотношение с другим является совершенно внешним. Как такое одно, которое есть число, оно, далее, имеет определенность (поскольку она есть соотношение с другим) как свои моменты внутри самого себя, в своем различии единицы и численности, и численность сама есть множество одних, т. е. в нем самом имеется этот абсолютно внешний характер. – Это противоречие числа или определенного количества вообще внутри себя есть то качество определенного количества, в дальнейших определениях которого (качества) это противоречие получает свое развитие.


Примечание 1

[Арифметические действия. Кантовские априорные синтетические суждения созерцания]


Пространственная и числовая величина обыкновенно рассматриваются как два различных вида величин, причем понимают это различие таким образом, что пространственная величина, взятая сама по себе, есть столь же определенная величина, как и числовая величина. Их различие состоит согласно этому способу рассмотрения лишь в определениях непрерывности и дискретности, как определенное же количество они стоят на одной ступени. Геометрия имеет, говоря вообще, своим предметом в виде пространственных величин непрерывную величину, а арифметика в виде числовых величин – дискретную. Но вместе с этой неодинаковостью предмета они также не обладают одинаковым способом и совершенством ограничения или определенности. Пространственная величина обладает лишь ограничением вообще; поскольку она должна рассматриваться как безоговорочно определенное количество, она нуждается в числе. Геометрия как таковая не измеряет пространственных фигур, не есть искусство измерения, она лишь сравнивает их. В даваемых ею дефинициях определения также отчасти заимствуются ею из равенства сторон, углов, из равного расстояния. Так, например, круг, основывающийся единственно только на равенстве расстояния всех возможных в нем точек от одной центральной точки, не нуждается для своего определения ни в каком числе. Эти определения, основывающиеся на равенстве или неравенстве, суть подлинно геометрические. Но их недостаточно, и для определения других фигур, например, треугольника, четырехугольника требуется число, заключающее в своем принципе, в одном, самостоятельную определяемость, а не определяемость с помощью чего-то другого, стало быть, не определяемость через сравнение. Пространственная величина имеет, правда, в точке определенность, соответствующую одному; однако точка, поскольку она выходит вне себя, превращается в другое, становится линией; так как она есть по существу лишь одно пространства, то она в соотношении становится некоторой такой непрерывностью, в которой снята точечность, самостоятельная определяемость, одно. Поскольку самостоятельная определяемость должна сохраниться во вне-себя-бытии, приходится представлять себе линию как некоторое множество одних, и она должна получить внутри себя границу, определение многих одних, т. е. мы должны брать величину линии – и точно так же и других пространственных определений – как число.

Арифметика рассматривает число и его фигуры, или, вернее сказать, не рассматривает их, а оперирует с ними. Ибо число есть безразличная, косная определенность; оно должно быть приведено в действие и в соотношение извне. Способы этого соотнесения суть виды арифметических действий. Они излагаются в арифметике одно после другого, и ясно, что одно действие зависит от другого. Однако в арифметике не выделяется руководящая нить их последовательности. Но из самого определения понятия числа легко получается тот систематический порядок, на который справедливо притязает изложение этих элементов в учебниках. На эти руководящие определения мы должны здесь вкратце обратить внимание читателя.

Число есть вообще вследствие своего принципа, одного, некое внешне сочетанное, всецело аналитическая фигура, в которой нет никакой внутренней связи. Так как оно, таким образом, есть лишь некое порожденное извне, то всякое исчисление есть продуцирование чисел, считание или, говоря более определенно, сосчитывание. Разница в этом внешнем продуцировании, совершающем постоянно лишь одно и то же, может заключаться единственно только в различии по отношению друг к другу тех чисел, которые должны быть сосчитываемы; такое различие само должно быть заимствовано из чего-то иного и из внешнего определения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "НАУКА ЛОГИКИ. том 1"

Книги похожие на "НАУКА ЛОГИКИ. том 1" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Георг Гегель

Георг Гегель - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Георг Гегель - НАУКА ЛОГИКИ. том 1"

Отзывы читателей о книге "НАУКА ЛОГИКИ. том 1", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.