» » » » Георг Гегель - НАУКА ЛОГИКИ. том 1


Авторские права

Георг Гегель - НАУКА ЛОГИКИ. том 1

Здесь можно скачать бесплатно "Георг Гегель - НАУКА ЛОГИКИ. том 1" в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
НАУКА ЛОГИКИ. том 1
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "НАУКА ЛОГИКИ. том 1"

Описание и краткое содержание "НАУКА ЛОГИКИ. том 1" читать бесплатно онлайн.








По этому вопросу следует главным образом привести мнение Эйлера. Полагая в основание общее определение Ньютона, он настаивает на том, что диференциальное исчисление рассматривает отношения приращений некоторой величины, причем, однако, бесконечно малая разность как таковая должна быть рассматриваема совершенно как нуль (Institut Calc. different., р. I, с. III). – Как это следует понимать, видно из вышеизложенного; бесконечно малая разность есть нуль лишь по количеству, а не качественный нуль; а как нуль по количеству, она есть лишь чистый момент отношения. Она не есть различие на некоторую величину. Но именно потому, с одной стороны, вообще ошибочно называть моменты, именуемые бесконечно малыми величинами, также и приращениями или убываниями и разностями. В основании этого определения лежит предположение, что к первоначально имеющейся конечной величине нечто прибавляется или нечто от нее отнимается, что совершается некоторое вычитание или сложение, некоторое арифметическое, внешнее действие. Но что касается перехода от функции переменной величины к ее диференциалу, то по нему видно, что он носит совершенно другой характер, а именно, как мы уже разъяснили, он должен рассматриваться как сведение конечной функции к качественному отношению ее количественных определений. – С другой стороны, сразу бросается в глаза, что когда говорят, что приращения суть сами по себе нули и что рассматриваются лишь их отношения, то это само по себе ошибочно, ибо нуль уже не имеет вообще никакой определенности. Это представление, стало быть, хотя и доходит до отрицания количества и определенно высказывает это отрицание, не схватывает вместе с тем последнего в его положительном значении качественных определений количества, которые, если пожелаем вырвать их из отношения и брать их как определенные количества, окажутся лишь нулями. – Лагранж (Theorie des fonct. analyt. Introd.) замечает о представлении пределов или последних отношений, что, хотя и можно очень хорошо представить себе отношение двух величин, покуда они остаются конечными, это отношение не дает рассудку ясного и определенного понятия, как только его члены становятся одновременно нулями. – И в самом деле, рассудок должен пойти далее той чисто отрицательной стороны, что члены отношения суть как определенные количества нули, и понять их положительно как качественные моменты. – А то, что Эйлер (в указанном месте § 84 и сл.) прибавляет далее касательно данного им определения, чтобы показать, что две так называемые бесконечно малые величины, которые якобы суть не что иное, как нули, тем не менее находятся в отношении друг к другу, и потому для их обозначения употребляется не знак нуля, а другие знаки, – не может быть признано удовлетворительным. Он хочет это обосновать различием между арифметическим и геометрическим отношениями; в первом мы обращаем внимание на разность, во втором – на частное, и, хотя арифметическое отношение между любыми двумя нулями всегда одинаково, это не значит, что можно сказать то же самое о геометрическом отношении; если 2 : 1 = 0 : 0, то по свойству пропорции, так как первый член вдвое больше второго, третий член тоже должен быть вдвое больше четвертого; поэтому на основании этой пропорции отношение 0:0 должно быть взято, как отношение 2 : 1. – Также и по обычной арифметике n X 0 = 0; следовательно, n : 1 = 0 : 0. – Однако именно потому, что 2 : 1 или n : 1 есть отношение определенных количеств, ему не соответствует ни отношение, ни обозначение 0 : 0.

Я воздерживаюсь от дальнейшего увеличения числа приведенных взглядов, так как рассмотренные уже достаточно показали, что в них, правда, скрыто содержится истинное понятие бесконечного, но что оно, однако, не выделено и не сформулировано во всей его определенности. Поэтому, когда высказывающие эти взгляды переходят к самому действию, то на нем не может сказаться истинное определение понятия, а, напротив, возвращается снова конечная определенность количества, и действие не может обойтись без представления о лишь относительно малом. Исчисление делает необходимым подвергать так называемые бесконечные величины обычным арифметическим действиям сложения и т. д., основанным на природе конечных величин, и тем самым хотя бы на мгновение признавать эти бесконечные величины конечными и трактовать их как таковые. Исчисление должно было бы обосновать правомерность того, что оно, с одной стороны, тянет эти величины вниз, вовлекает их в эту сферу и трактует их как приращения или разности, а с другой стороны, пренебрегает ими как определенными количествами после того, как оно только что применяло к ним формы и законы конечных величин.

Я приведу еще самое существенное о попытках геометров устранить эти затруднения.

Более старые аналитики меньше затрудняли себя такими сомнениями; но старания более новых аналитиков были направлены преимущественно к тому, чтобы возвратить исчисление бесконечно малых к очевидности собственно геометрического метода и с помощью этого метода достигнуть в математике строгости доказательств древних (выражения Лагранжа). Однако, так как принцип анализа бесконечного по своей природе выше, чем принцип математики конечных величин, то анализ бесконечного сам собою сразу же должен был отказаться от того рода очевидности, подобно тому, как философия также не может притязать на ту отчетливость, которой обладают науки о чувственном, например, естественная история, или подобно тому, как еда и питье считаются более понятными вещами, чем мышление и постижение посредством понятия (Begreifen). Поэтому нам придется говорить лишь о стараниях достигнуть строгости доказательств древних.

Некоторые математики пытались обойтись совершенно без понятия бесконечного и дать без него то, что казалось связанным с его употреблением. – Лагранж, например, рассказывает о методе, изобретенном Ланденом, и говорит о нем, что он является чисто аналитическим и не употребляет бесконечно малых разностей, а сначала вводит различные значения переменных величин и в дальнейшем приравнивает их между собою. Лагранж, впрочем, заявляет, что в этом методе утрачиваются свойственные диференциальному исчислению преимущества, а именно простота метода и легкость действия. – Это – прием, в котором есть нечто соответственно тому, из которого исходит Декартов метод касательных, о котором нам придется ниже еще говорить подробнее. Здесь можем заметить, что в общем виде сразу ясно, что этот прием, заключающийся в том, чтобы придавать переменным величинам различные значения и затем приравнивать их между собою, принадлежит вообще к другому кругу математической трактовки, чем сам метод диференциального исчисления, и им не выделяется подлежащее далее более пристальному рассмотрению своеобразие того простого отношения, к которому сводится действительное, конкретное определение этого исчисления, а именно – отношения производной функции к первоначальной.

Более ранние из новых математиков, как например, Ферма, Барроу и др., которые впервые пользуются бесконечно малыми в том применении, которое позднее привело к разработке диференциального и интегрального исчисления, а затем также Лейбниц и последующие математики, равно как и Эйлер, всегда откровенно высказывались, что считают дозволительным отбрасывать произведения бесконечно малых разностей так же, как и их высшие степени только на том основании, что они относительно, по сравнению с низшими порядками, исчезают. Исключительно на этом соображении покоится у них основная теорема, а именно, определение того, что такое диференциал произведения или степени, ибо к этому сводится все теоретическое учение. Остальное есть отчасти механизм действий, отчасти же приложение, которое, однако, как мы покажем далее, на самом деле представляет более высокий или, лучше сказать, единственный интерес. – Относительно же того вопроса, который мы рассматриваем теперь, следует здесь привести лишь то элементарное соображение, что на основании того же рассуждения о незначительности принимается как основная теорема о кривых, что элементы кривых, а именно приращения абсциссы и ординаты имеют между собою то же отношение, как подкасательная и ордината. С целью получить подобные треугольники дуга, составляющая наряду с двумя приращениями третью сторону того треугольника, который справедливо назывался когда-то характеристическим треугольником, рассматривается как прямая линия, как часть касательной, и потому одно из приращений – как доходящее до касательной. Эти допущения поднимают, с одной стороны, вышеуказанные определения выше природы конечных величин; но, с другой стороны, здесь применяется к моментам, называемым теперь бесконечными, такой прием, который значим лишь относительно конечных величин и при котором мы не имеем права чем-либо пренебрегать на основании его незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "НАУКА ЛОГИКИ. том 1"

Книги похожие на "НАУКА ЛОГИКИ. том 1" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Георг Гегель

Георг Гегель - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Георг Гегель - НАУКА ЛОГИКИ. том 1"

Отзывы читателей о книге "НАУКА ЛОГИКИ. том 1", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.