Георг Гегель - НАУКА ЛОГИКИ. том 1
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "НАУКА ЛОГИКИ. том 1"
Описание и краткое содержание "НАУКА ЛОГИКИ. том 1" читать бесплатно онлайн.
Так как в способе Архимеда, точно так же, как и позднее в исследовании Кеплером стереометрических предметов, встречается представление о бесконечно-малом, то это обстоятельство слишком часто приводилось в качестве авторитета в пользу того употребления, которое делают из этого представления в диференциальном исчислении, причем не выделялись черты своеобразия и отличия. Бесконечно-малое означает прежде всего отрицание определенного количества как такового, т. е. так называемого конечного выражения или той завершенной определенности, которой обладает определенное количество как таковое. И точно так же в последующих знаменитых методах Валериуса, Кавальери и др., основанных на рассмотрении отношений геометрических предметов, основным определением является положение о том, что определенное количество, как определенное количество таких определений, которые ближайшим образом рассматриваются лишь в отношении, оставляется для этой цели в стороне, и эти определения должны быть принимаемы сообразно с этим за не имеющие величины (Nicht-Grosses). Но отчасти этим не познано и не выделено то утвердительное вообще, которое лежит за исключительно отрицательным определением и которое выше оказалось, говоря абстрактно, качественной определенностью величины, состоящей, говоря более определенно, в степенном отношении; отчасти же, поскольку само это отношение в свою очередь включает в себя множество ближе определенных отношений, как например, отношение между некоторой степенью и функцией, получающейся в результате ее разложения в ряд, они должны были бы быть в свою очередь обоснованы всеобщим и отрицательным определением того же бесконечно-малого и выведены из него. В только что приведенном изложении Лагранжа найдено то определенное утвердительное, которое заключается в архимедовом способе развертывания задачи, и тем самым приему, обремененному неограниченным выхождением, дана его настоящая граница. Величие нового изобретения, взятого само по себе, и его способность разрешать до того времени неприступные задачи, а те задачи, которые и ранее были разрешимы, разрешать более простым способом, – это величие следует видеть исключительно в открытии отношения первоначальной функции к так называемой производной функции и тех частей математического целого, которые находятся в таком отношении.
Данное нами изложение взглядов можно считать достаточным для нашей цели, заключающейся в том, чтобы подчеркнуть своеобразие того отношения величин, которое служит предметом рассматриваемого здесь особого вида исчисления. Излагая эти взгляды, мы могли ограничиться простыми задачами и способом их решения; и ни цели, которая исключительно имелась здесь в виду (а именно: установить определенность понятия рассматриваемых определений), ни силам автора не соответствовало бы обозреть весь объем так называемого приложения диференциального и интегрального исчисления и завершить индукцию, гласящую, что найденный принцип лежит в основании этих видов исчисления, сведением всех их задач и решений последних к этому принципу. Но изложенное достаточно показало, что, как каждый особый вид исчисления имеет своим предметом особую определенность или особое отношение величины и такое отношение конституирует сложение, умножение, возвышение в степень и извлечение корня, счет посредством логарифмов, рядов и т. д., – точно так же обстоит дело и с диференциальным и интегральным исчислением; для того отношения, которое присуще этому исчислению, наиболее подходящим названием было бы отношение степенной функции к функции ее развертывания или возвышения в степень, так как это название всего ближе к пониманию сущности дела. Лишь так, как в этом исчислении вообще применяются равным образом и действия, основанные на других отношениях величин, например сложение и т. д., в нем применяются также и отношения логарифмов, круга и рядов, в особенности для того, чтобы сделать более удобными выражения, нужные для требуемых действий вывода первоначальных функций из функций развертывания. С формой ряда диференциальное и интегральное исчисление имеет, правда, тот ближайший общий интерес, что оба они стремятся определить те функции развертывания, которые в рядах называются коэфициентами членов; но в то время как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэфициенту ее развертывания, ряд стремится представить некоторую сумму в виде множества членов, расположенного по степеням, снабженным этими коэфициентами. Бесконечное, имеющее место в бесконечном ряде, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, заключающимся в бесконечном этого исчисления. И точно так же бесконечно-малое как приращение, посредством которого развертывание принимает форму ряда, есть лишь внешнее средство для развертывания, и его так называемая бесконечность не имеет никакого другого значения, кроме значения такого средства; ряд, так как он на самом деле не есть то, что требуется, приводит к некоторой избыточности, вновь отбросить которую стоит лишнего труда. Этой необходимостью лишнего труда страдает также и метод Лагранжа, который вновь прибег преимущественно к форме ряда, хотя благодаря именно этому методу в том, что называют приложением, выступает истинное своеобразие высшего анализа, так как, не втискивая в предметы форм d x, d y и т. д., метод Лагранжа прямо указывает ту часть этих предметов, которой свойственна определенность производной функции (функции развертывания), и этим обнаруживает, что форма ряда вовсе не есть то, о чем здесь идет речь*.
Примечание 3
Еще другие формы, находящиеся в связи с качественной определенностью величины
Бесконечно-малое диференциального исчисления есть в своем утвердительном смысле качественная определенность величины, а об этой последней мы показали ближе, что она в этом исчислении наличествует не только вообще как степенная определенность, но как особенная степенная определенность отношения некоторой степенной функции к степенному члену разложения (Entwicklungspotenz) (51a). Но качественная определенность имеется также еще и в дальнейшей, так сказать, более слабой форме, и эта последняя, равно как связанное с нею употребление бесконечно малых и их смысл в этом употреблении, должны еще быть рассмотрены в настоящем примечании.
Исходя из предшествующего, мы должны в этом отношении сперва напомнить, что различные степенные определения выступают с аналитической стороны прежде всего таким образом, что они оказываются лишь формальными и совершенно однородными, означают числовые величины, которые как таковые не имеют вышеуказанного качественного различия друг от друга. Но в приложении к пространственным предметам аналитическое отношение являет себя во всей своей качественной определенности, как переход от линейных к плоскостным определениям, от прямолинейных к криволинейным определениям и т. д. Далее, это приложение влечет за собой то последствие, что пространственные предметы, согласно своей природе данные в форме непрерывных величин, понимаются, как дискретные, – плоскость, значит, понимается, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самих точек, на которые разлагается линия, линий, на которые разлагается плоскость, и т. д., чтобы, исходя из такого определения, иметь возможность двигаться далее аналитически, т. е., собственно говоря, арифметически; эти исходные пункты представляют собой для искомых определений величины те элементы, из которых должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в которых по преимуществу оказывается выгодным употреблять этот прием, требуют, чтобы в виде элемента наличествовало в качестве исходного пункта некое само по себе определенное, в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то само по себе определенное, нахождение которого он ставит себе целью. Полученный результат сводится в обоих методах к одному и тому же, если только оказывается возможным найти закон все дальнейшего и дальнейшего определения, при отсутствии возможности достигнуть полного, т. е. так называемого конечного определения. Кеплеру приписывается честь, что ему впервые пришла, в голову мысль прибегнуть к указанному обратному ходу решения и сделать исходным пунктом дискретное. Его объяснение того, как он понимает первую теорему архимедова измерения круга, выражает это очень просто. Первая теорема Архимеда, как известно, гласит, что круг равен прямоугольному треугольнику, один катет которого равен радиусу, а другой – длине окружности. Так как Кеплер находит смысл этой теоремы в том, что окружность круга содержит в себе столько же частей, сколько точек, т. е. бесконечно много, из которых каждая может рассматриваться как основание равнобедренного треугольника, то он этим выражает разложение непрерывного в форму дискретного. Встречающееся здесь выражение «бесконечное» еще очень далеко от того определения, которое оно должно иметь в диференциальном исчислении. Если для таких дискретных найдена некоторая определенность, функция, то в дальнейшем они должны быть соединены, должны по существу служить элементами непрерывного. Но так как никакая сумма точек не образует линии, никакая сумма линий не образует плоскости, то точки уже с самого начала принимаются за линейные, равно как линии за плоскостные. Однако, так как вместе с тем указанные линейные точки еще не должны быть линиями, чем они были бы, если бы их принимали за определенные количества, то их представляют себе как бесконечно-малые. Дискретное способно лишь к внешнему объединению, в котором моменты сохраняют смысл дискретных одних; аналитический переход от последних совершается лишь к их сумме, он не есть вместе с тем геометрический переход от точки к линии и от линии к плоскости и т. д. Элементу, имеющему свое определение как точка или как линия, придается поэтому вместе с тем наряду с качеством точки еще и качество линейности, а линии – еще и качество плоскости, дабы сумма как сумма маленьких линий оказалась линией и как сумма маленьких плоскостей – плоскостью.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "НАУКА ЛОГИКИ. том 1"
Книги похожие на "НАУКА ЛОГИКИ. том 1" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георг Гегель - НАУКА ЛОГИКИ. том 1"
Отзывы читателей о книге "НАУКА ЛОГИКИ. том 1", комментарии и мнения людей о произведении.