» » » » Эдвард Кроули - Переосмысление инженерного образования. Подход CDIO


Авторские права

Эдвард Кроули - Переосмысление инженерного образования. Подход CDIO

Здесь можно скачать бесплатно "Эдвард Кроули - Переосмысление инженерного образования. Подход CDIO" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент «Высшая школа экономики»1397944e-cf23-11e0-9959-47117d41cf4b, год 2015. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Эдвард Кроули - Переосмысление инженерного образования. Подход CDIO
Рейтинг:
Название:
Переосмысление инженерного образования. Подход CDIO
Издательство:
Литагент «Высшая школа экономики»1397944e-cf23-11e0-9959-47117d41cf4b
Год:
2015
ISBN:
978-5-7598-1218-0
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Переосмысление инженерного образования. Подход CDIO"

Описание и краткое содержание "Переосмысление инженерного образования. Подход CDIO" читать бесплатно онлайн.



В книге рассматривается подход к инженерному образованию, который интегрирует личностные, межличностные и профессиональные навыки с дисциплинарными техническими знаниями с целью подготовить инженера, способного к инновациям и предпринимательству. Инженерное образование ставится в контекст инженерной деятельности, которая включает планирование, проектирование, производство и применение (Conceiving, Designing, Implementing, and Operating – CDIO), т. е. полный жизненный цикл инженерных процессов, продуктов и систем. Кроме того, описываются разработка и применение модели CDIO.

Настоящее издание является руководством по улучшению образовательных программ для подготовки молодых инженеров во всем мире.






Необходимо отметить, что жизненный цикл объекта или системы – это контекст, а не содержание инженерного образования. Это означает, что не каждому инженеру необходимо быть специалистом по разработке. Инженер может иметь предметные знания в машиностроении, электроэнергетике или химии, однако эти знания должны быть приобретены в контексте, обеспечивающем освоение навыков и умений, необходимых для проектирования и применения объектов.

Вывод о том, что планирование, проектирование, производство и применение должны стать естественным контекстом инженерного образования, настолько очевиден, что невольно напрашивается вопрос: почему эта модель не является таким контекстом повсеместно уже сегодня? Ответ в том, что в инженерных вузах работают, как правило, не инженеры-практики, а инженеры-исследователи. Они производят новое инженерное знание, следуя редукционистскому подходу, поскольку благодаря ему значительно вознаграждаются усилия отдельных лиц. В инженерной практике, напротив, применяется системный подход для производства инженерных объектов, процессов и систем, при котором важна работа команды. Тем не менее необходимо подчеркнуть, что практический контекст используется для глубокого освоения базовых инженерных знаний. Таким образом, необходимо понимать, что изменение контекста образования основывается на изменении общей культуры образования.

Можно возразить, что такие перемены невозможны в условиях университета. По сути, сложившаяся на текущий момент напряженная ситуация в инженерном образовании многих стран является именно результатом такой трансформации. До 1950‑х годов, а в ряде стран и позже, преподавателями вузов были практикующие инженеры. Образование было сугубо практическим. В 1950‑х годах началась техническая революция, благодаря которой в университеты пришли молодые ученые, а 1960‑е годы XX столетия можно назвать «золотым веком» инженерного образования. Студентов одновременно обучали преподаватели старой практико-ориентированной школы и молодые инженеры-ученые. Однако к 1970‑м годам представители старшего поколения вышли на пенсию и их повсеместно заменили ученые-теоретики. Иными словами, культура и контекст инженерного образования коренным образом изменились и стали научно-ориентированными.

Главное внимание – освоению основ. Целью изменения общей парадигмы инженерного образования было стремление дать студентам теоретические основания для решения неизвестных технических задач в будущем. Ни в коем случае не преуменьшая значимости перехода инженерного образования от практики к науке и признавая огромный вклад научных изысканий, поведенных за последние полвека, необходимо отметить, что следствием такой трансформации стало изменение культуры инженерного образования. Понимание ценности важнейших практических навыков и умений, формирование которых являлось ранее отличительным признаком инженерного образования, резко снизилось. Не случайно в 1980‑х годах многие развитые страны мира стали отмечать изменение качества знаний и недостаточное владение навыками и умениями у выпускников инженерных программ. Когда обеспокоенность, выраженная промышленными компаниями в 1980‑х годах, не возымела никакого действия, реакция промышленников в 1990‑х стала более заметной, о чем уже упоминалось ранее.

Эволюцию состава преподавателей инженерных программ можно проследить и по соотношению учебных мероприятий, направленных на обучение техническим основам и формирование личностных, межличностных и процессуальных навыков, а также навыков создания объектов и систем. Такая эволюция схематично представлена на рис. 2.1. До 1950‑х годов инженерное образование носило преимущественно практический характер, к 1960‑м годам XX века между двумя аспектами установился определенный баланс, а к 1980‑м годам укоренилась новая модель обучения, акцентирующая внимание на освоении базовых технических знаний. Данная тенденция представлена в виде компромиссной кривой, поскольку, в связи с тем что обучение является технологией передачи информации, наличие ограничений в производительности и времени позволяет передать лишь ограниченный объем знаний. Если следовать этой модели обучения, возникает естественный вопрос: что следует убрать из программы, чтобы найти место формированию практических навыков? Мы считаем, что существуют альтернативные модели обучения, отличные от модели передачи информации, которые позволяют избежать очевидного конфликта. Подход CDIO – это попытка создать такое образование, которое позволит осваивать постоянно увеличивающийся объем предметных знаний и одновременно приобретать универсальные навыки, необходимые для успешной инженерной деятельности.



Результаты обучения. Первой конкретной задачей на пути создания модели образовательной программы с применением нового подхода стала разработка и систематизация атрибутов, необходимых современному инженеру. Для решения этой задачи были созданы рабочие группы из преподавателей инженерных программ, студентов и представителей промышленности с целью найти ответ на вопрос: каким набором знаний, практических навыков и характеристик должны обладать выпускники инженерных вузов? Приведем пример содержательного ответа, полученного от участника одной из рабочих групп Рэя Леопольда, бывшего вице-президента и главного технолога подразделения по глобальным телекоммуникационным решениям (Global Telecom Solutions Sector) компании Motorola (пример 2.1). По результатам деятельности рабочих групп и с учетом предложений представителей промышленности, государственных структур и вузов требования к выпускникам университетов были представлены в виде перечня результатов обучения, известного как CDIO Syllabus. Описание и обоснование перечня результатов обучения изложены в главе 3.

Пример 2.1. Необходимые атрибуты выпускников программ CDIO с точки зрения промышленных компаний

По моим оценкам, наиболее важное качество потенциальных выпускников программ CDIO – это способность применять инженерные навыки при наличии ответственного понимания соответствия выполненной работы реальным потребностям общества. Для этого необходима успешная реализация проектов (в широком смысле) с участием инженеров и представителей других профессий. Инженер должен быть способен находить не только технические, но и потенциально успешные экономические решения, уметь оценить стоимость проекта. Выпускник инженерного вуза должен уметь не только генерировать гениальные идеи, но и применять их на практике.

Как часть этого процесса, выпускники инженерных программ должны иметь более полное представление о прибыли, которую они приносят своей организации. Им необходимы развитые личностные компетенции, способность работать в команде с другими инженерами и специалистами из других областей. Профессионализм инженера основан не только на широте и глубине предметных знаний, но и на собственном опыте применения личностных и профессиональных компетенций.

В своих компаниях мы обычно стремимся определить, чтó человек знает, какой вклад он может внести в общее дело, каковы перспективы компании от сотрудничества с ним и насколько человек соответствует корпоративному духу. Часто мы отказываем в работе высококвалифицированным специалистам, которые не могут продемонстрировать личностные качества, необходимые для работы в нашей команде, или чей возможный рост ограничен узкой технической областью. Нам необходимы глубокие технические знания, но они должны находиться в контексте. И нам также необходима способность работать в команде. Во время интервью я часто задаю вопросы, позволяющие понять характер человека, например: «Опишите случай, когда в период учебы вам приходилось:


решать задачу с коллегой, который не был заинтересован в общем результате;

повторно оценивать предложенный проект;

перестраивать свой рабочий график, чтобы уложиться в сроки».


Выпускник программы CDIO должен уметь уверенно отвечать на такие вопросы, а его ответы должны не только иметь прямое отношение к заданному вопросу, но и демонстрировать более широкое понимание проблемы.

Р. Леопольд, корпорация Motorola

Как видно из табл. 2.2, результаты обучения студентов были разделены в CDIO Syllabus на четыре группы.


1. Дисциплинарные знания и понимание.

2. Личностные компетенции и профессиональные навыки.

3. Межличностные компетенции: работа в команде и коммуникация.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Переосмысление инженерного образования. Подход CDIO"

Книги похожие на "Переосмысление инженерного образования. Подход CDIO" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Эдвард Кроули

Эдвард Кроули - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Эдвард Кроули - Переосмысление инженерного образования. Подход CDIO"

Отзывы читателей о книге "Переосмысление инженерного образования. Подход CDIO", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.