» » » Александр Поддьяков - Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт


Авторские права

Александр Поддьяков - Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт

Здесь можно купить и скачать "Александр Поддьяков - Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт" в формате fb2, epub, txt, doc, pdf. Жанр: Воспитание детей, педагогика, издательство Литагент «Когито-Центр»881f530e-013a-102c-99a2-0288a49f2f10, год 2006. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Поддьяков - Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт
Рейтинг:
Название:
Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт
Издательство:
неизвестно
Год:
2006
ISBN:
5-98549-011-4
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт"

Описание и краткое содержание "Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт" читать бесплатно онлайн.



Монография посвящена психологии исследовательского поведения. Анализируются методология и стратегии исследовательского поведения, а также различные виды взаимодействия и взаимопроникновения исследовательского поведения, интеллекта, творчества и игры. Показана роль самостоятельной исследовательской деятельности в познавательном, социальном и личностном развитии ребенка.

Описаны общие подходы и конкретные методы обучения исследовательскому поведению. Особое внимание уделено помощи и противодействию исследовательскому поведению, обучению и развитию учащихся со стороны окружающих в различных ситуациях сотрудничества и конкуренции.

Для психологов, педагогов и представителей смежных дисциплин.






Как показывает К. Глой, этот статический, инвариантный тип систем, стремящийся свести все разнообразие мира к одной единственной неизменной формуле, отвечает потребности человека в обозримости, порядке и постоянстве. Но принципиальной слабостью инвариантных систем является непреодолимый разрыв между бесконечным богатством изменяющейся реальности и идеализирующим понятийным единством, простотой и точностью. Как попытка преодоления недостатков систем статического типа возникла теория динамических систем. Аппарат теории динамических систем способен конструктивно работать с понятиями неопределенности, нестабильности, непредсказуемости и т. д. Однако решающее обоснование преимуществ подхода динамических систем тоже невозможно, поскольку упирается в свой парадокс: совокупное множество всех динамических структур есть одновременно и структура, и неструктурированная предпосылка структуры. Таким образом, проблема решающего преимущества того или иного из этих подходов, берущих свое начало еще с трудов древнегреческих философов, не имеет решения. Оба подхода отражают определенные аспекты реального мира и являются взаимодополнительными по отношению друг к другу [Глой, 1994].

В XX веке в рамках интенсивно развивающегося системно-динамического подхода были сделаны следующие научные открытия, качественно изменившие представления о мире и возможностях и ограничениях его познания.

Ограничения познания реальных сложных систем

При работе со сложными системами были выявлены принципиальные ограничения возможностей описания их актуального состояния, реконструкции их прошлого и предсказания будущего. Первые утверждения подобного рода были доказаны в термодинамике и квантовой механике. В термодинамике была показана необратимость времени и невозможность восстановить предшествующую траекторию движения системы в пространстве состояний (невозможность однозначно восстановить ее «историю»). В квантовой механике В. Гейзенберг сформулировал принцип неопределенности: невозможно определить и координаты, и импульс микрочастицы. Измеряя что-то одно, мы теряем возможность измерить другое. Н. Бор сформулировал принцип дополнительности, отражающий дуализм (двойственность) «волна – частица»: описание поведения микрочастиц как корпускул является недостаточным, оно должно быть дополнено альтернативным волновым. В течение XX века эти принципы были осмыслены философией, а также обобщены в новых и интенсивно развивающихся так называемых нелинейных науках, науках о сложном, науке о самоорганизации сложных динамических систем (синергетике).

В этих науках также было показано, что принципиальные ограничения касаются не только возможностей познания настоящего и прошлого системы. Аналогично, «существует горизонт прогноза. Это такое же серьезное препятствие в исполнении наших желаний, как скорость передачи сигналов или невозможность создания вечного двигателя» [Малинецкий, Потапов, 1998, с. 23]. В чем причины этого ограничения прогностических возможностей?

Когда система по внутренним или внешним причинам приходит в состояние неустойчивости, она становится чрезвычайно чувствительной к малейшим, ранее несущественным воздействиям. Эти системы так и называются – чувствительные [Глой, 1994]. В математических моделях этих систем бесконечно малые воздействия в точках бифуркации (точках неустойчивости и выбора дальнейшего пути) приводят к бесконечно большим отклонениям траектории движения в пространстве состояний. Так, две системы-близнецы, двигаясь по одной и той же траектории до точки бифуркации, после нее под влиянием двух бесконечно мало различающихся друг от друга воздействий отправляются по разным траекториям и расходятся на бесконечно большое расстояние.

В реальности неустойчивость и чувствительность к ранее несущественным влияниям могут приводить к принципиально непредсказуемой смене детерминант развития. В эти «трудные» периоды «происходит качественное изменение структуры прогнозируемых процессов, так что закономерность, действовавшая на предыдущем этапе и дававшая монотонный рост показателей, перестает действовать и сменяется иной закономерностью, которую необходимо изучать, описывать, учитывать с помощью принципиально иных моделей» [Венда, 1990, с. 217]. Заранее, на основе имеющихся фактов и теорий самого высокого уровня невозможно предсказать, какая новая система детерминант возникнет во вновь формирующейся области – какие признаки в ней станут существенными (системообразующими), какие потеряют свой статус существенных, и какие законы и принципы в ней станут работать. Невозможность такого прогноза объясняется несколькими причинами, связанными как с объективными свойствами реального мира, так и с ограничениями методов выводного знания. Остановимся на этом подробнее, используя аргументацию Х. Дрейфуса [1978], Ю. М. Лотмана [1992] и А. Н. Кричевца [1998].

Прогноз на основе методов выведения осуществляется с помощью модели, в которой лишь определенные свойства, связи и отношения объектов приняты в качестве основных, существенных. Другие свойства, связи и отношения считаются малосущественными, а третьи не учитываются вообще – модель абстрагируется от их существования. Без такого абстрагирования, идеализации модель невозможна [Мамчур, Овчинников, Уемов, 1989; Уемов, 1971]. Но при увеличении неустойчивости реальной системы возрастет ее чувствительность к малым, ранее несущественным внешним и внутренним воздействиям различных типов, которыми раньше можно было обоснованно пренебречь. Возникает возможность подчинения системы этим не учтенным в модели влияниям. Число этих неучтенных, потенциально существенных влияний бесконечно велико в силу бесконечного разнообразия мира. Но чем точнее и строже модель, тем более строго она устанавливает границы и условия перехода между: а) возможным, существующим, существенным и б) невозможным, несуществующим и несущественным. В предельных случаях модель действует по принципу жесткой, однозначной дихотомии, подразделяя все реальные свойства и связи на две группы. Переход между этими группами либо прямо объявляется невозможным, либо неявно подразумевается таковым. Первая группа – это абсолютно существенные свойства и связи, представленные в модели. Вторая группа – все остальные свойства, связи и отношения, совершенно несущественные, в модель не входящие и для нее не существующие. С этим и связано принципиальное ограничение прогностической способности строгих и точных моделей. Они не могут моделировать малозаметные нюансы, слабые тенденции развития, от которых модель с необходимостью абстрагировалась для того, чтобы существовать как модель, но которые на практике превращаются в основные и системообразующие. А. Н. Кричевец сформулировал следующее фундаментальное положение: «Точное описание не может быть описанием развития, а описание развития не может быть точным, причем речь идет не о присущей всем эмпирическим наукам приблизительности описания, но о принципиальной его невозможности» [Кричевец, 1998, с. 118]. (Это положение можно рассматривать как качественный шаг вперед по сравнению с закономерностью, сформулированной ранее Л. Заде [1976]: точность описания системы связана обратной зависимостью с ее сложностью – чем сложнее система, тем менее точно ее адекватное описание; сложные системы требуют не точных, а «размытых», нечетких описаний).

Мы еще не раз вернемся к положению о принципиальной ограниченности любой теоретической модели сколь угодно высокого уровня.

Положение о границе предсказуемости («горизонте прогноза») относится ко всем сложным динамическим системам, включая неодушевленные, но особое значение оно имеет для систем, обладающих психикой. Эти последние начинают активно использовать возможность выбора и смены «правил игры», возможность изменения детерминант своего поведения, руководствуясь соображениями повышения его непредсказуемости. По В. В. Налимову [1989] и Ю. М. Лотману [1992], сущность психического состоит в повышении свободы и росте непредсказуемости. Соответственно, прогресс психики означает возрастание свободы и повышение уровня непредсказуемости. Н. Н. Поддьяков считает, что в целом ряде случаев системы, обладающие психикой, стремятся не к стабильным, устойчивым состояниям, как это предполагается в кибернетических моделях более простых систем, а, наоборот, к состояниям нестабильным, неустойчивым. Целевым параметром функционирования динамической системы, обладающей психикой, становится именно само нарастание неустойчивости, без предзаданности конкретного неустойчивого состояния, в которое система должна перейти. Система находится в активном поиске нестабильных состояний, поскольку они обещают значительное увеличение спектра новых, «неизвестных» ей возможностей [Поддьяков Н. Н., 1998]. Непредсказуемость, целенаправленный вывод своего поведения за рамки модели, используемой противостоящим субъектом, использование в качестве существенного того, что он считает несущественным и не учитывает, становится одним из основных условий выживания и победы в конфликте систем, обладающих рефлексией [Лефевр, 1973; Лотман, 1992].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт"

Книги похожие на "Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Поддьяков

Александр Поддьяков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Поддьяков - Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт"

Отзывы читателей о книге "Исследовательское поведение. Стратегии познания, помощь, противодействие, конфликт", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.