Коллектив авторов - Руководство по спортивной медицине
Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Руководство по спортивной медицине"
Описание и краткое содержание "Руководство по спортивной медицине" читать бесплатно онлайн.
Руководство рекомендовано Экспертным советом по лечебной физкультуре и спортивной медицине Министерства здравоохранения и социального развития РФ для специалистов по спортивной медицине, студентов медицинских и физкультурных вузов, преподавателей факультетов и вузов физической культуры и спорта, тренеров и методистов по оздоровительным формам физической культуры и спорта.
Спортивная медицина – специальная дисциплина государственных образовательных стандартов по нескольким направлениям подготовки (здравоохранение, гуманитарные и социальные науки) и специальностям: 060101 «Лечебное дело», 060103 «Педиатрия», 032100 «Физическая культура», 032101 «Физическая культура и спорт», 032102 «Адаптивная физическая культура».
Умеренная гипертрофия сердца сочетается при адаптации к физическим нагрузкам с повышением активности аденилциклазной системы и увеличением количества адренергических волокон на единицу массы миокарда. В результате адренореактивность сердца и возможность его срочной мобилизации увеличиваются. Одновременно в головках миозина наблюдается увеличение количества Н-цепей, являющихся носителями АТФазной активности.Онавозрастает, иврезультатеувеличиваютсяскорость и амплитуда сокращения сердечной мышцы. Далее нарастает мощность кальциевого насоса СПР и как следствие – скорость и глубина диастолического расслабления сердца. Параллельно в миокарде отмечается увеличение количества коронарных капилляров, повышение концентрации миоглобина и активности ферментов, ответственных за транспорт субстратов к митохондриям, возрастание массы последних. Увеличение мощности системы энергообеспечения закономерно влечет за собой повышение резистентности сердца к утомлению и гипоксемии.
Избирательное увеличение мощности структур, ответственных за управление, ионный транспорт и энергообеспечение, не является оригинальной принадлежностью сердца, оно закономерно реализуется во всех органах, ответственных за адаптацию. В процессе адаптационной реакции органы образуют единую функциональную систему, а развивающиеся в них структурные изменения представляют собой системный структурный след, который составляет основу адаптации.
Системный структурный след в нервной регуляции проявляется в гипертрофии нейронов моторных центров, повышении в них активности дыхательных ферментов; на уровне эндокринной регуляции – в гипертрофии коркового и мозгового вещества надпочечников; на уровне регуляции рабочих органов – в гипертрофии скелетных мышц и увеличении в них количества митохондрий. Последний сдвиг имеет исключительное значение, так как в сочетании с увеличением мощности систем кровообращения и внешнего дыхания он обеспечивает увеличение аэробного потенциала организма, необходимого для интенсивного функционирования аппарата движения. В результате увеличения количества митохондрий рост аэробной мощности организма сочетается с возрастанием способности мышц утилизировать пируват, в повышенных количествах образующийся при нагрузках вследствие активации гликолиза. Это предупреждает повышение концентрации лактата в крови адаптированного организма и тормозит использование жиров. При развитой адаптации увеличение использования пирувата в митохондриях предотвращает увеличение концентрации лактата в крови, обеспечивает мобилизацию и использование в митохондриях жирных кислот и в итоге повышает максимальную интенсивность и длительность работы.
Следовательно, разветвленный структурный след «расширяет» звено, лимитирующее работоспособность организма, и таким образом составляет основу перехода срочной, но ненадежной адаптации в долговременную.
Аналогичным образом происходят формирование системного структурного следа и переход срочной адаптации в долговременную при длительном действии на организм совместимой с жизнью высотной гипоксии. Адаптация к этому фактору характеризуется тем, что первоначальная гиперфункция и последующая активация синтеза нуклеиновых кислот и белков охватывают одновременно многие системы организма и образующийся системный структурный след оказывается более разветвленным, чем при адаптации к другим факторам. Действительно, вслед за гипервентиляцией развиваются активация синтеза нуклеиновых кислот и белков и последующая гипертрофия нейронов дыхательного центра, дыхательной мускулатуры и самих легких, в которых увеличивается количество альвеол. В результате возрастает мощность аппарата внешнего дыхания, дыхательная поверхность легких и коэффициент утилизации кислорода – увеличивается экономичность функции дыхания. В системе кроветворения активация синтеза нуклеиновых кислот и белков в костном мозге становится причиной увеличенного образования эритроцитов и полицитемии, что обеспечивает рост кислородной емкости крови. Наконец, активация синтеза нуклеиновых кислот и белков в правых и, в меньшей мере, левых отделах сердца обеспечивает развитие комплекса изменений, сходных с теми, которые возникают при адаптации к физическим нагрузкам. В результате функциональные возможности сердца, и особенно его резистентность к гипоксемии, возрастают.
Синтез активируется также в системах, функция которых не повышена, а нарушена дефицитом кислорода, и прежде всего в коре и нижележащих отделах головного мозга. Эта активация вызывается дефицитом АТФ, так как реализуется взаимосвязь Г ↔ Ф. Активация синтеза нуклеиновых кислот и белков, развивающаяся под влиянием гипоксии мозга, становится основой роста сосудов, стационарного увеличения активности гликолиза и, таким образом, вносит свой вклад в формирование системного структурного следа, составляющего основу адаптации к гипоксии. Итог формирования этого состоит в том, что адаптированные люди приобретают возможность осуществлять в условиях недостатка кислорода такую физическую и интеллектуальную активность, которая исключена для неадаптированных. В известном примере при подъеме в барокамере на высоту 7000 м хорошо адаптированные аборигены Анд могли играть в шахматы, а неадаптированные жители равнин теряли сознание.
При адаптации к некоторым факторам системный структурный след оказывается пространственно весьма ограниченным – он локализован в определенных органах. Так, при адаптации к возрастающим дозам ядов закономерно развивается активация синтеза нуклеиновых кислот и белков в печени. Результатом является увеличение мощности системы микросомального окисления, в которой главную роль играет цитохром Р-450. Системный структурный след может проявляться увеличением массы печени, он составляет основу адаптации, которая выражается в том, что резистентность организма к таким ядам, как барбитураты, морфий, алкоголь, никотин, существенно возрастает.
Влияние мощности системы микросомального окисления на резистентность организма к химическим факторам весьма велико. Показано, что после курения одной стандартной папиросы концентрация никотина в крови у некурящих в 10 – 12 раз выше, чем у курящих (у которых мощность системы микросомального окисления увеличена и на этой основе сформировалась адаптация к никотину). С помощью химических факторов, ингибирующих систему микросомального окисления, можно снизить резистентность организма к любым химическим веществам, в частности к наркотикам, а с помощью факторов, индуцирующих увеличение мощности микросомального окисления, можно, напротив, повысить резистентность. Продемонстрирована возможность перекрестной адаптации на уровне системы микросомального окисления в печени. Мощность этой системы является одним из факторов, влияющих на уровень холестерина в крови и, следовательно, на вероятность развития атеросклероза.
Таким образом, намечается перспектива индуцированного увеличения мощности системы микросомального окисления для профилактики заболеваний, связанных с избыточным накоплением в организме определенного эндогенного метаболита. Эта задача решается на основе пространственно ограниченного, локализованного в печени системного структурного следа.
Мы видим, что системный структурный след составляет общую основу различных долговременных реакций организма, но при этом в основе адаптации к различным факторам среды лежат системные структурные следы различной локализации и архитектуры.
Взаимосвязь функции и генетического аппарата – основа формирования системного структурного следа. При рассмотрении взаимосвязи Г ↔ Ф целесообразно вначале оценить основные черты, характеризующие реализацию этого явления, а затем сам механизм, за счет которого функция влияет на активность генетического аппарата дифференцированной клетки. Эти общие закономерности рассматриваются на примере жизненно важного органа – сердца.
1. Реакция генетического аппарата дифференцированной клетки на длительное непрерывное увеличение функции – стадийный процесс.
Выделяют четыре стадии, наиболее четко проявляющиеся при непрерывной компенсаторной гиперфункции внутренних органов, но иногда прослеживающиеся и при мобилизации функции факторами внешней среды.
В первой, аварийной, стадии увеличение ИФС мобилизует функциональный резерв, например, включает в функцию все актомиозиновые генерирующие силу мостики в кардиомиоцитах сердца, все нефроны почки или все альвеолы легкого. При этом расход АТФ на функцию превосходит ее ресинтез и развивается выраженный дефицит АТФ, нередко сопровождающийся лабилизацией лизосом, повреждением клеточных структур и явлениями функциональной недостаточности органа.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Руководство по спортивной медицине"
Книги похожие на "Руководство по спортивной медицине" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о " Коллектив авторов - Руководство по спортивной медицине"
Отзывы читателей о книге "Руководство по спортивной медицине", комментарии и мнения людей о произведении.