» » » Китти Фергюсон - Стивен Хокинг. Непобедимый разум


Авторские права

Китти Фергюсон - Стивен Хокинг. Непобедимый разум

Здесь можно купить и скачать "Китти Фергюсон - Стивен Хокинг. Непобедимый разум" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии, издательство Литагент Corpus, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Китти Фергюсон - Стивен Хокинг. Непобедимый разум
Рейтинг:
Название:
Стивен Хокинг. Непобедимый разум
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-115613-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Стивен Хокинг. Непобедимый разум"

Описание и краткое содержание "Стивен Хокинг. Непобедимый разум" читать бесплатно онлайн.



Образ великого астрофизика Стивена Хокинга, давно стал культовым, его имя – синоним и гениальности, и мужества, и надежды. Когда-то кембриджскому студенту поставили страшный диагноз – БАС – и обещали не более двух лет жизни. Юноша бросился дописывать диссертацию – вдруг успеет. И успел: сделать огромный вклад в изучение загадок вселенной, прославиться на весь мир научно-популярными книгами для взрослых и детей, стать героем игровых и документальных фильмов, дважды жениться, обзавестись внуками… В теле инвалида, лишенном движения и речи, жило неукротимое существо, на всю планету излучавшее энергию, ум, юмор и обаяние. Американская писательница Китти Фергюсон много лет публикует книги и читает лекции о космологии для широкой аудитории. Международную известность ей принес “талант переводить с языка физиков на простой человеческий”. Биографию Хокинга она писала с одобрения и при помощи своего героя и в итоге смогла не только воссоздать его личную историю, но и увлекательно рассказать о его научной работе, нацеленной на постижение самых основ вселенной.





Эйнштейн считал, что искривление вызвано присутствием массы или энергии. Любое крупное тело усиливает искривление пространства-времени. Все, что движется “по прямой”, вынуждено сворачивать на этот кривой путь. Представьте себе батут (рис. 5.1). В центре лежит шар для боулинга, резиновая основа под ним прогибается. Попытайтесь прокатить мяч для гольфа строго по прямой мимо мяча для боулинга. Мяч для гольфа непременно отклонится от своего маршрута, попав в углубление, продавленное мячом для боулинга. Более того: возможно, мяч для гольфа даже опишет эллипс и покатится обратно к вам. Что-то в том же роде происходит, когда Луна пытается двигаться по прямой мимо Земли. Земля продавливает пространство-время, как мяч для боулинга продавливает батут. Лунная орбита максимально приближена к прямой в параметрах искривленного пространства-времени.

Эйнштейн описывал то же явление, которое наблюдал Ньютон. В теории Эйнштейна массивный объект продавливает пространство-время. Ньютон считал, что массивный объект излучает некую силу. Результат в обоих случаях один и тот же: второй объект изменяет направление движения. В общей теории относительности “гравитационное поле” и “искривление пространства-времени” – синонимы.

Рассчитывая орбиты планет Солнечной системы по Ньютону и по Эйнштейну, вы получите практически одинаковые результаты, за исключением лишь расчетов для Меркурия. Поскольку Меркурий ближе других планет находится к Солнцу, он более подвержен его притяжению. Теория Эйнштейна предсказывает несколько иные последствия такого положения Меркурия, нежели теория Ньютона, и астрономические наблюдения подтвердили, что Эйнштейн точнее, чем Ньютон, описал движение Меркурия.


Рис. 5.1. Шар для боулинга продавливает резиновый батут, на котором он лежит. При попытке прокатить мимо шара для боулинга другой мячик, поменьше, этот мячик отклоняется от прямого пути там, где попадает во вмятину от шара для боулинга. Так и в пространстве-времени траектория объектов искривляется под действием более массивных объектов.


Теория Эйнштейна предполагает, что искривлению пространства-времени подвластны и другие объекты помимо лун и планет. По кривой движутся и частицы света – фотоны. Когда луч далекой звезды проходит неподалеку от Солнца, искривление пространства-времени возле Солнца слегка отклоняет этот луч от прямой в сторону нашего светила, подобно тому как мячик для гольфа в нашем эксперименте отклонялся ближе к шару для боулинга. Возможно, отклонившись от прямого пути, этот луч в итоге достигнет Земли. Солнце светит настолько ярко, что разглядеть свет далеких звезд мы можем лишь во время затмения. Но если во время затмения мы увидим такой луч, то, не зная, как воздействовало на него притяжение Солнца, мы составим ложное представление о том, в каком направлении двигался луч света и где находится та звезда (рис. 5.2). Астрономы используют это явление: они измеряют массу небесных тел, основываясь на том, как сильно те искажают лучи далеких звезд. Чем больше масса “искривителя”, тем сильнее искривление.


Рис. 5.2. Поскольку присутствие большой массы вызывает искривление пространства-времени, свет далекой звезды отклоняется от прямой, проходя рядом с таким массивным телом, как Солнце. Отметьте разницу между видимой с Земли позицией звезды и ее реальным положением.


До сих пор мы обсуждали гравитацию в макромасштабах. Именно в таких масштабах она становится очевидна – когда действует на уровне звезд, галактик, целой вселенной, – и с этим масштабом Хокинг имел дело под конец 1960-х. Однако – вспомним главу 2 – гравитацию можно рассматривать и на самом микроскопическом, квантовом уровне. Более того, пока мы не изучим гравитацию на квантовом уровне, мы не сможем соотнести ее с тремя другими силами, две из которых только на этом уровне и действуют. При квантово-механическом описании гравитационных взаимодействий Земли и Луны предполагается обмен гравитонами (разновидностью бозонов, частиц-вестников гравитационной силы) между теми частицами, из которых состоят эти два небесных тела.

Нарисовав фон, побалуем себя страничкой научной фантастики.

День гибели Земли

Вспомним, как действует сила притяжения на Земле (рис. 5.3а), а затем отправимся на каникулы в космос. Пока мы отдыхали, с Землей что-то случилось, она съежилась и сделалась вдвое меньше прежнего. Масса осталась прежней, однако плотность во много раз возросла. Доставляя вас после отдыха домой, ракета зависает на том уровне, где раньше находилась поверхность Земли. Вы чувствуете свой вес – тот, который ощущали, когда покидали Землю: ее масса, как и ваша, осталась прежней, и вы сейчас находитесь на том же расстоянии от центра земной гравитации (помните закон Ньютона!). Луна у вас за спиной движется по привычной орбите. Но когда вы приземлитесь на новой поверхности Земли, вы окажетесь вдвое ближе к центру гравитации, и сила притяжения возрастет вчетверо – ваш вес, по вашим ощущениям, окажется намного больше, чем до каникул (рис. 5.3b).

А если случится что-то пострашнее? Если Земля сожмется в горошину, вся ее масса, миллиарды тонн, – в немыслимой плотности точке? Гравитация на поверхности этой горошины возрастет настолько, что вторая космическая скорость должна была бы превысить скорость света. Значит, никто и ничто, даже луч света, не сможет покинуть эту горошину. Земля превратится в черную дыру. Тем не менее на том расстоянии от центра, где прежде находилась земная поверхность, и далее притяжение Земли будет казаться точно таким же, каким оно является ныне (рис 5.3с), и Луна продолжит безмятежно вращаться по своей орбите.


Рис. 5.3. День гибели Земли.


Насколько нам известно, подобный сценарий выходит за грани научного: планеты не превращаются в черные дыры. А вот звезды превращаются. Давайте расскажем ту же историю заново, назначив главной героиней звезду.

Возьмем для начала звезду, чья масса вдесятеро больше массы Солнца, и с радиусом около трех миллионов километров – в пять раз больше радиуса Солнца. Вторая космическая скорость на поверхности такой звезды составит 1000 км/сек. Подобная звезда живет около ста миллионов лет, и все это время внутри нее совершается страшная борьба.

На одной стороне в этой борьбе выступает гравитация, то есть взаимное притяжение всех частиц, составляющих звезду. Гравитация прежде всего и стянула воедино частицы газа, сплотив их в звезду. И теперь, когда частицы оказались ближе друг к другу, гравитация усиливается и пытается вызвать обрушение звезды вовнутрь, коллапс.

Изнутри звезду распирает газ, его давление противодействует гравитации. Давление вызвано избытком тепла, которое высвобождается, когда внутри звезды сталкиваются ядра водорода и соединяются, образуя ядро гелия. Благодаря жару небесное тело испускает свет, а давление изнутри уравновешивает гравитацию и не дает звезде “схлопнуться”.

Так сотню миллионов лет продолжается борьба. Потом внутри звезды заканчивается топливо: нет больше атомов водорода, все они превратились в гелий. В некоторых звездах процесс пойдет дальше: гелий начнет превращаться в более тяжелые элементы, но это лишь краткая отсрочка. Давление изнутри уже не сможет противодействовать гравитации, и звезда съежится. По мере того как объем звезды будет уменьшаться, гравитация на ее поверхности будет становиться все сильнее – так происходило и при формировании Земли. В черную дыру превращается отнюдь не песчинка: если масса звезды в десять раз превышает массу Солнца, а ее радиус достигает тридцати километров, для отрыва от поверхности понадобится скорость 300 000 км/сек, то есть скорость света. Когда свет не сможет покинуть звезду, это и означает, что она стала черной дырой (рис. 5.4)[94].


Рис. 5.4. Коллапс звезды и появление черной дыры.


После того как вторая космическая скорость для данной звезды превысит скорость света, уже не будет смысла спрашивать, продолжает ли она съеживаться: даже если нет, она уже стала черной дырой. Вспомните наш пример с уменьшением Земли: на прежнем расстоянии от центра и притяжение оставалось прежним. Будет ли звезда и дальше уменьшаться в размерах до точки с бесконечной плотностью или остановится как раз в тот момент, когда вторая космическая сравняется со скоростью света, гравитация на этом расстоянии от центра будет постоянной, и вторая космическая всегда будет равна скорости света. Свет этой звезды не сможет покинуть ее, а лучи, достигающие ее от дальних звезд, не просто искривятся: они обмотаются вокруг черной дыры несколькими витками, прежде чем вырваться или упасть на нее (рис. 5.5). Войдя в черную дыру, свет уже не выйдет из нее: для этого пришлось бы превысить скорость света, что невозможно. Полное затемнение. Ни света, ни отражения, ни какого-либо излучения (ни радиоволн, ни микроволн, ни рентгеновских лучей и т.д.). Ни слух, ни зрение, ни космический зонд – ничто туда не проникает. И впрямь черная дыра!


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Стивен Хокинг. Непобедимый разум"

Книги похожие на "Стивен Хокинг. Непобедимый разум" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Китти Фергюсон

Китти Фергюсон - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Китти Фергюсон - Стивен Хокинг. Непобедимый разум"

Отзывы читателей о книге "Стивен Хокинг. Непобедимый разум", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.