» » » Китти Фергюсон - Стивен Хокинг. Непобедимый разум


Авторские права

Китти Фергюсон - Стивен Хокинг. Непобедимый разум

Здесь можно купить и скачать "Китти Фергюсон - Стивен Хокинг. Непобедимый разум" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии, издательство Литагент Corpus, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Китти Фергюсон - Стивен Хокинг. Непобедимый разум
Рейтинг:
Название:
Стивен Хокинг. Непобедимый разум
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-115613-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Стивен Хокинг. Непобедимый разум"

Описание и краткое содержание "Стивен Хокинг. Непобедимый разум" читать бесплатно онлайн.



Образ великого астрофизика Стивена Хокинга, давно стал культовым, его имя – синоним и гениальности, и мужества, и надежды. Когда-то кембриджскому студенту поставили страшный диагноз – БАС – и обещали не более двух лет жизни. Юноша бросился дописывать диссертацию – вдруг успеет. И успел: сделать огромный вклад в изучение загадок вселенной, прославиться на весь мир научно-популярными книгами для взрослых и детей, стать героем игровых и документальных фильмов, дважды жениться, обзавестись внуками… В теле инвалида, лишенном движения и речи, жило неукротимое существо, на всю планету излучавшее энергию, ум, юмор и обаяние. Американская писательница Китти Фергюсон много лет публикует книги и читает лекции о космологии для широкой аудитории. Международную известность ей принес “талант переводить с языка физиков на простой человеческий”. Биографию Хокинга она писала с одобрения и при помощи своего героя и в итоге смогла не только воссоздать его личную историю, но и увлекательно рассказать о его научной работе, нацеленной на постижение самых основ вселенной.





Что еще можно сказать о вселенной – воздушном шарике? Ее размеры не бесконечны. У поверхности “шарика” имеются определенные параметры, которые мы можем измерить, как и поверхность Земли. Никто ведь не утверждает, будто поверхность Земли бесконечна. Но вместе с тем у поверхности Земли нет границ, и в этом смысле она беспредельна. Муравей, ползущий по воздушному шарику, никогда не наткнется на непреодолимое препятствие, поверхность нигде не кончается, он не свалится с нее: если будет ползти достаточно упорно, вернется когда-нибудь в исходную точку.

В первоначальной модели Фридмана пространство выглядит именно так: оно обладает не двумя, а тремя измерениями, но гравитация загибает пространство на самое себя. В таком случае вселенная отнюдь не бесконечна по размеру, но и не имеет предела, то есть границы. Ни один космический корабль никогда не долетит до того места, где вселенная кончается. Понять это непросто, ведь мы привыкли отождествлять понятия “бесконечный” и “беспредельный”. Однако это не одно и то же.

Хокинг напоминает: хотя затея облететь вселенную и вернуться в исходный пункт могла бы послужить прекрасным сюжетом для научной фантастики, на деле она неосуществима, по крайней мере, в этой модели Фридмана. Чтобы облететь вселенную прежде, чем вселенная перестанет существовать, понадобилась бы скорость, превышающая лимит для этой вселенной (то есть скорость света), а это невозможно. Наш шарик очень велик, а мы – совсем маленькие муравьишки.

Время в этой модели Фридмана тоже не бесконечно. Его можно измерить, и, в отличие от пространства, у времени есть границы, есть начало и конец. Посмотрите на рисунок 6.1а. В начале времени расстояние между двумя галактиками равно нулю. Они расходятся – расходятся медленно, и масса вселенной достаточно велика, так что постепенно силы притяжения останавливают это движение и вынуждают вселенную, наоборот, сжиматься. Галактики начинают вновь сближаться. В конце времен расстояние между ними опять равно нулю. Возможно, именно так устроена наша вселенная.

На рисунках 6.1b и 6.1c представлены две другие модели, которые также соответствуют предпосылкам Фридмана (вселенная выглядит одинаково во всех направлениях и из любой точки). На рис. 6.1b расширение происходит значительно быстрее. Гравитация не может его остановить, только слегка замедляет. На рис. 6.1с вселенная расширяется не так быстро, как на рис. 6.1b, но достаточно быстро, чтобы избежать коллапса. Скорость расхождения галактик становится все меньше и меньше, однако они продолжают расходиться. Если верна какая-либо из этих двух моделей вселенной, то пространство бесконечно: оно не заворачивается само на себя.


Рис. 6.1. Три модели, соответствующие идее Фридмана: вселенная выглядит одинаковой в любом от нас направлении, и вселенная выглядит одинаково из любой точки наблюдения во вселенной.


Какая модель соответствует нашей вселенной? Зависит от того, сколько во вселенной массы, сколько голосов в совокупности у электората. Чтобы “закрыть” вселенную, понадобится значительно больше массы, чем мы наблюдаем сейчас. Так в упрощенном виде формулируется намного более сложная проблема, к которой мы в дальнейшем еще вернемся.

Теория Пенроуза о звездах, которые в результате коллапса превращаются в черные дыры, работает лишь в бесконечном пространстве, во вселенной, которая будет расширяться вечно (как на рис. 6.1b и 6.1c), а не схлопнется (как на рис. 6.1а). Хокинг первым взялся доказать, что вселенная с бесконечным пространством не только должна иметь сингулярные точки в виде черных дыр, но и начиналась с сингулярной точки. Заканчивая свою работу, он почувствовал такую уверенность, что подытожил: “В прошлом у нас – сингулярная точка”[98].

В 1968 году трактат Хокинга и Пенроуза о начале времен завоевал второй приз Фонда исследований гравитации, но вопрос все еще висел в воздухе: что, если правильна первая модель Фридмана, та, в которой пространство ограниченно и вселенную в итоге настигает коллапс (рис. 6.1а)? Можно ли утверждать, что и такой тип вселенной начинается с сингулярной точки? К 1970 году Хокинг и Пенроуз сумели доказать, что это верно и для такой вселенной. В “Публикациях Королевской академии” за 1970 год вышла их совместная статья[99], где со всей определенностью утверждалось: если вселенная подчиняется общей теории относительности и соответствует любой модели Фридмана и если во вселенной имеется столько вещества, сколько мы наблюдаем, то она должна была начаться с сингулярной точки, в которой вся масса была спрессована до бесконечной плотности, искривление пространства-времени было бесконечным, и расстояние между любыми объектами равнялось нулю.

Физическая теория не может работать с бесконечно большими числами. Предсказав сингулярную точку с бесконечной плотностью и бесконечным искривлением пространства-времени, общая теория относительности тем самым предсказала свой собственный конец. Любые научные теории разбиваются о загадку сингулярности. Мы утрачиваем возможность предвидеть, законы физики бессильны предсказать, что могло бы явиться из сингулярности – это может оказаться любая разновидность вселенной. А как насчет того, что произошло до образования сингулярности? Неизвестно даже, имеет ли подобный вопрос смысл.

Сказать, что в начале вселенной – сингулярная точка, все равно что сказать: начало вселенной лежит за пределами нашего знания, за пределами любых попыток создать теорию всего. Мы можем утверждать лишь, что время началось, потому что мы это видим, однако и тут немало гадательного. Сингулярность захлопывает дверь прямо у нас перед носом.

Сказка на ночь

Физиков дразнят тем, что они всегда и всюду размышляют о своей науке. Хокинг превосходил в этом смысле даже своих коллег: он выполнял все расчеты в голове – отчасти это стало последствием его недуга – и потому в самом деле носил работу с собой повсюду и мог заняться ею в любой момент. Кип Торн обнаружил у Стивена поразительную способность оперировать мысленными образами объектов, кривых, поверхностей, причем не в трех, а в четырех измерениях пространства-времени[100].

Прекрасный пример того, как работал Хокинг, он сам приводит в книге “Краткая история времени”: “Как-то вечером в ноябре 1970 года, вскоре после рождения моей дочери Люси, я размышлял о черных дырах, пока укладывался спать. Мой недуг превращает укладывание в медленный процесс, поэтому времени для размышлений у меня было предостаточно”[101]. Другой ученый на месте Хокинга кинулся бы к столу записать основные мысли, уравнения, но Хокинг совершил одно из главных в своей жизни открытий в уме, с тем лег в постель и пролежал без сна до рассвета, дожидаясь первых лучей солнца, чтобы позвонить Пенроузу и поделиться с ним новыми идеями. Пенроуз, как утверждает сам Хокинг, тоже думал в этом направлении, однако не охватил последствия этой гипотезы.

Вот в чем суть пришедшей в голову Хокингу идеи: черная дыра не может уменьшаться в размерах, потому что периметр горизонта событий (граница невозврата, расстояние от центра, на котором вторая космическая должна превышать скорость света) не может сократиться.

Представим себе: в результате коллапса звезда съежилась до того радиуса, при котором вторая космическая совпадает со скоростью света. Что произойдет с фотонами, которые эта звезда испускает в момент, когда ее радиус станет еще меньше? Гравитация достаточно сильна, чтобы не позволить лучам света выйти за пределы этого радиуса, но не настолько сильна, чтобы втянуть их в черную дыру. Фотоны так и останутся мерцать по периметру, на прежнем расстоянии от центра, на постоянном горизонте событий. А сама звезда будет и дальше уменьшаться в размерах и не сможет более испускать фотоны.

Хокинг понял: если на горизонте событий скапливаются лучи света, векторы этих лучей не должны пересекаться. Если бы лучи приблизились друг к другу, они бы столкнулись и рухнули в черную дыру. Чтобы область горизонта событий сокращалась, чтобы черная дыра уменьшалась в размерах, как раз и нужно, чтобы лучи на горизонте событий сближались. И здесь парадокс: если они сблизятся, они рухнут в черную дыру, а горизонт событий не станет меньше.

Можно подойти к тому же выводу с другого конца: понять, что черная дыра может расти. Размеры черной дыры определяются ее массой, а значит, черная дыра увеличивается, когда что-то попадает в нее и пополняет ее массу. Поскольку ничто не может выйти из черной дыры, уменьшиться ее масса не может – а значит, не уменьшится и сама черная дыра.

Открытие Хокинга получило название второго закона динамики черной дыры: область горизонта событий (граница черной дыры) остается одинаковой или увеличивается, но никогда не уменьшается. Если две, или более, черные дыры столкнутся и сольются в одну, область нового горизонта событий будет равна сумме прежних или окажется больше этой суммы. Черную дыру нельзя уменьшить, уничтожить или расколоть на две черные дыры, хоть что с ней делай. Не кажется ли вам отчасти знакомой формулировка этого открытия Хокинга? Ну конечно же, это похоже на другой “второй закон” – второй закон термодинамики, тот самый, об энтропии.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Стивен Хокинг. Непобедимый разум"

Книги похожие на "Стивен Хокинг. Непобедимый разум" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Китти Фергюсон

Китти Фергюсон - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Китти Фергюсон - Стивен Хокинг. Непобедимый разум"

Отзывы читателей о книге "Стивен Хокинг. Непобедимый разум", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.