» » » Китти Фергюсон - Стивен Хокинг. Непобедимый разум


Авторские права

Китти Фергюсон - Стивен Хокинг. Непобедимый разум

Здесь можно купить и скачать "Китти Фергюсон - Стивен Хокинг. Непобедимый разум" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии, издательство Литагент Corpus, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Китти Фергюсон - Стивен Хокинг. Непобедимый разум
Рейтинг:
Название:
Стивен Хокинг. Непобедимый разум
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-115613-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Стивен Хокинг. Непобедимый разум"

Описание и краткое содержание "Стивен Хокинг. Непобедимый разум" читать бесплатно онлайн.



Образ великого астрофизика Стивена Хокинга, давно стал культовым, его имя – синоним и гениальности, и мужества, и надежды. Когда-то кембриджскому студенту поставили страшный диагноз – БАС – и обещали не более двух лет жизни. Юноша бросился дописывать диссертацию – вдруг успеет. И успел: сделать огромный вклад в изучение загадок вселенной, прославиться на весь мир научно-популярными книгами для взрослых и детей, стать героем игровых и документальных фильмов, дважды жениться, обзавестись внуками… В теле инвалида, лишенном движения и речи, жило неукротимое существо, на всю планету излучавшее энергию, ум, юмор и обаяние. Американская писательница Китти Фергюсон много лет публикует книги и читает лекции о космологии для широкой аудитории. Международную известность ей принес “талант переводить с языка физиков на простой человеческий”. Биографию Хокинга она писала с одобрения и при помощи своего героя и в итоге смогла не только воссоздать его личную историю, но и увлекательно рассказать о его научной работе, нацеленной на постижение самых основ вселенной.





Тот периметр, на котором вторая космическая сравнялась со скоростью света, становится границей черной дыры, точкой невозвращения, “горизонтом событий”. В конце 1960-х Хокинг и Пенроуз предложили считать черную дыру областью вселенной или “рядом событий”, откуда ничто не может вырваться наружу. Это определение прижилось. Черная дыра, границей которой служит горизонт событий, обнаруживается, лишь когда в пространстве-времени прослеживаются пути космических лучей, которые останавливаются на краю этой сферической границы, не проникая вовнутрь, но и не в силах уйти от нее. Гравитация на таком расстоянии от центра черной дыры достаточно сильна, чтобы не отпустить эти лучи, но недостаточно сильна, чтобы притянуть их ближе. Как же выглядит эта сфера? Словно огромный, мерцающий в космосе шар? Нет. Если фотоны не могут оторваться от орбиты, они не достигают наших глаз. Чтобы мы увидели объект, нужно, чтобы от него до нас долетели фотоны.


Рис. 5.5. На схеме (а) частицы движутся из космоса к звезде. Пути частиц 1, 2 и 3 искривляются с приближением к звезде: чем ближе к звезде, тем сильнее искривление. Частицы 4 и 5 падают на поверхность звезды. В схеме (b) частицы 1, 2 и 3 отклоняются в точности как прежде, поскольку пространство-время за пределами звезды ничем не отличается от пространства-времени за пределами черной дыры той же массы. (Вспомните пример со сжатием Земли.) Частица 4 вращается вокруг черной дыры и исчезает. Она может совершить множество оборотов. Частица 5 падает в черную дыру.


Классическая теория учит, что черная дыра открывает лишь три свои тайны: свою массу, свой электрический заряд (если он есть) и угловой момент, то есть скорость вращения (если она вращается). Джон Уилер, рисовавший мелом на доске картинки в помощь своим студентам, изображал, как в черную дыру, смахивающую на туннель, проваливаются телевизор, цветок, стул, “известные частицы”, гравитационные и электромагнитные волны, угловой момент, масса, “еще не открытые частицы”, а с другого конца туннеля выходят лишь масса, заряд и угловое движение. Одной из задач Хокинга в начале 1970-х[95] стала разработка доказательства забавного утверждения Уилера: “У черных дыр нет волос”.

Размеры черной дыры определяются ее массой. Чтобы вычислить радиус черной дыры (расстояние от ее центра, на котором формируется горизонт событий), возьмите ее солярную массу (она примерно такая же, как была у звезды, превратившейся в черную дыру, если только часть массы не была потеряна при коллапсе) и умножьте это число на три – получите расстояние в километрах. Черная дыра с солярной массой, равной десяти, то есть вдесятеро превышающей массу нашего Солнца, формирует горизонт событий с радиусом в тридцать километров. Понятно, что с изменением массы меняется и радиус, меняются размеры черной дыры. Об этой возможности мы поговорим позже.

Задернув занавес на горизонте событий, звезда погружается в полную изоляцию, поскольку излучаемый ею свет, ее образ, который можно было бы наблюдать из другой точки вселенной, не выпускается за эту границу. Пенроуз хотел понять, продолжится ли коллапс звезды и что будет происходить с ней дальше. Он убедился, что в результате описанного выше коллапса вся материя звезды оказывается внутри ее поверхности, в плену нарастающей силы тяжести, и даже если съеживание не происходит вполне гладко, с сохранением идеальной сферической поверхности, коллапс звезды продолжается. В конце концов поверхность достигает нулевого размера, а материя все так же остается внутри. Огромная звезда с десятикратной солярной массой оказывается пленницей не только горизонта событий радиусом в 30 километров, но более того – нулевого радиуса, нулевого объема. Математики и физики называют такой объект сингулярной точкой. В сингулярной точке плотность материи бесконечна, бесконечно искривление пространства-времени, и лучи света не просто наматываются вокруг – они наматываются с бесконечной плотностью.

Общая теория относительности предвидела существование сингулярных точек, но в начале 1960-х мало кто принимал эту идею всерьез. Физики предполагали, что звезда с достаточно большой массой, подвергшись гравитационному коллапсу, возможно, превращается в сингулярную точку. Пенроуз доказал: если вселенная подчиняется общему закону относительности, то не “возможно”, а непременно.

Глава 6

В прошлом у нас – сингулярная точка

Хокинг вдохновился идеей Пенроуза: звезда с достаточно большой массой во время гравитационного коллапса превращается в сингулярную точку. Вместе с Пенроузом и Робертом Джерочем он начал применять понятие сингулярной точки к другим физическим и математическим задачам[96]. Он был уверен, что эта теория сможет многое объяснить и в происхождении вселенной. То была радостная работа, “со счастливой уверенностью, что все это поприще принадлежит только нам”[97]. Хокинг понял: если повернуть время вспять, чтобы коллапс обратился в расширение, гипотеза Пенроуза по-прежнему будет верна. Раз, согласно общей теории относительности, на определенном этапе коллапс непременно превращает звезду в черную дыру, то расширяющаяся вселенная должна была начаться с сингулярной точки. Это будет верно в том случае, если вселенная соответствует так называемой “модели Фридмана”. Что представляет собой модель Фридмана?

Выбор Вселенных

Пока Хаббл не доказал, что вселенная расширяется, вера в статическую вселенную (вселенную с неизменными размерами) была настолько прочна, что Эйнштейн, создав к 1915 году общую теорию относительности, предполагавшую в числе прочего нестатичность вселенной, предпочел внести изменения в свою теорию, до такой степени он был убежден в неизменности размеров вселенной. Великий физик дополнил свое уравнение “космологической константой”, уравновешивающей гравитацию. Без космологической константы общая теория относительности утверждала то самое, что мы теперь принимаем за истину: размеры вселенной меняются.

Российский физик Александр Фридман решил принять теорию Эйнштейна в ее первозданном виде, без космологической константы, и на основании этой теории предсказал то, что подтвердит в 1929 году Хаббл: вселенная расширяется.

Фридман исходил из двух предпосылок: 1) вселенная кажется одинаковой, в какую сторону ни глянь, и исключение составляют лишь близкие к нам объекты – очертания галактики Млечного Пути, наша Солнечная система; 2) вселенная выглядит одинаково с любой точки наблюдения во вселенной. Иными словами, космическому путешественнику вселенная все равно будет казаться одинаковой, в каком направлении ни погляди.

Первую предпосылку Фридмана принять нетрудно, а вот со второй нелегко смириться. Мы не располагаем доказательствами ни за ни против. Как говорит Хокинг, “мы соглашаемся с этим утверждением лишь из скромности: странно было бы, если б вселенная выглядела одинаковой во всех направлениях только с Земли, но не из других точек наблюдения”. Странно, однако ведь не вовсе невозможно. Скромность – ничуть не более убедительный аргумент, чем гордыня. И все же физики в большинстве своем согласны с Фридманом.

В модели Фридмана все галактики движутся прочь друг от друга, и чем дальше они друг от друга, тем быстрее расходятся. Это совпадает с наблюдениями Хаббла. По мнению Фридмана, путешествуя во вселенной, мы все так же будем видеть, как вселенные убегают от нас. Вообразите себе муравья, ползущего по воздушному шарику, на поверхности которого нарисованы на равном расстоянии точки. И пусть муравей не воспринимает то измерение, которое позволило бы ему выглянуть “за пределы” поверхности шарика. О внутренней стороне шарика он также не имеет понятия. Вселенная муравьишки сводится к поверхности шарика. Она кажется одинаковой во всех направлениях. И куда бы муравей ни пополз, впереди столько же точек, сколько позади. Если шарик начнет раздуваться, муравей из любой точки поверхности увидит, как точки отдаляются от него. Вселенная в виде надувающегося шарика соответствует обоим предположениям Фридмана: она выглядит одинаково, куда ни погляди, и она выглядит одинаково из любой точки наблюдения.

Что еще можно сказать о вселенной – воздушном шарике? Ее размеры не бесконечны. У поверхности “шарика” имеются определенные параметры, которые мы можем измерить, как и поверхность Земли. Никто ведь не утверждает, будто поверхность Земли бесконечна. Но вместе с тем у поверхности Земли нет границ, и в этом смысле она беспредельна. Муравей, ползущий по воздушному шарику, никогда не наткнется на непреодолимое препятствие, поверхность нигде не кончается, он не свалится с нее: если будет ползти достаточно упорно, вернется когда-нибудь в исходную точку.

В первоначальной модели Фридмана пространство выглядит именно так: оно обладает не двумя, а тремя измерениями, но гравитация загибает пространство на самое себя. В таком случае вселенная отнюдь не бесконечна по размеру, но и не имеет предела, то есть границы. Ни один космический корабль никогда не долетит до того места, где вселенная кончается. Понять это непросто, ведь мы привыкли отождествлять понятия “бесконечный” и “беспредельный”. Однако это не одно и то же.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Стивен Хокинг. Непобедимый разум"

Книги похожие на "Стивен Хокинг. Непобедимый разум" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Китти Фергюсон

Китти Фергюсон - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Китти Фергюсон - Стивен Хокинг. Непобедимый разум"

Отзывы читателей о книге "Стивен Хокинг. Непобедимый разум", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.