» » » Сэмюел Стернберг - Трещина в мироздании


Авторские права

Сэмюел Стернберг - Трещина в мироздании

Здесь можно купить и скачать "Сэмюел Стернберг - Трещина в мироздании" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Литагент Corpus, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сэмюел Стернберг - Трещина в мироздании
Рейтинг:
Название:
Трещина в мироздании
Издательство:
неизвестно
Жанр:
Год:
2019
ISBN:
978-5-17-109309-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Трещина в мироздании"

Описание и краткое содержание "Трещина в мироздании" читать бесплатно онлайн.



Дженнифер Даудна – одна из ведущих современных генетиков, под ее руководством была разработана технология редактирования генома CRISPR – самый дешевый, но при этом самый точный и мощный способ манипуляций с ДНК. Но довольно быстро стало понятно, что этот метод, позволяющий прицельно изменять ДНК живого организма, – очень рискованная технология, которую уже называют “самым опасным изобретением со времен атомной бомбы”. Генетические манипуляции – это настоящая “трещина в мироздании”, из которой могут вырваться темные силы, способные уничтожить человечество…





Дружелюбный и располагающий к себе уроженец Монтаны, впитавший вместе с любовью к спортивным играм присущий им дух соперничества, Блейк приехал в Беркли из Бозмена, из Университета штата Монтана, где он получил и высшее образование, и степень доктора философии. В отличие от большинства исследователей, которых мне приходилось брать на работу до него (все они специализировались на биохимии или структурной биологии), Блейк был прирожденным микробиологом. Подобно Джилл, часть своих исследований он проводил в лаборатории, а часть – собирая образцы в полевых условиях. Работа над докторской диссертацией заносила его и в Йеллоустонский национальный парк, и в Россию, на Камчатку, где в кислотной воде горячих источников он обнаружил ранее неизвестные вирусы, способные выживать и сохранять способность к заражению при температурах выше 75 °C. Стало известно, что эти вирусы инфицируют архей – одноклеточные организмы, похожие на бактерии; в геноме почти у каждой археи есть CRISPR. После секвенирования геномов двух выделенных им вирусов Блейк обнаружил, что значительная часть ДНК у них совпадает. Это означало, что у вирусов должен был быть общий предок – несмотря на огромное расстояние, отделяющее Йеллоустон от Камчатки. Геномы вирусов также содержали ответы на вопрос, каким образом они заражают своих хозяев; анализируя конкретные вирусные гены, Блейк вычислил, какой именно фермент, скорее всего, давал вирусам возможность встраивать фрагменты своих геномов в ДНК ничего не подозревающих хозяев.

Именно такого рода “расследование” нам надо было провести в отношении CRISPR – только в обратную сторону. Вместо того чтобы сконцентрироваться на вирусных генах, обеспечивающих инфицирование, нам необходимо было выследить те гены в бактериях, которые препятствуют заражению – и ассоциированы с CRISPR. Или гены, которые, как мы считаем, препятствуют заражению. Мы в то время еще не были уверены, что именно обеспечивает этот эффект – cas-гены или сам CRISPR.

Большая часть наших ранних обсуждений вращалась вокруг привлекательной гипотезы, согласно которой CRISPR и cas-гены представляют собой части одной системы иммунной защиты от вирусов и РНК используется в этой системе для обнаружения последних. Но гипотеза – лишь первый этап любого обстоятельного научного исследования. Так что нам нужно было еще проверить эту гипотезу и собрать сведения, подтверждающие или опровергающие ее.

На встречах с Джилл и несколькими заинтересованными учеными в Национальной лаборатории имени Лоуренса всего в нескольких минутах ходьбы от моего кабинета в Беркли мы с Блейком размышляли, как нам организовать наши эксперименты. Главный вопрос заключался в том, какой модельный организм нам использовать. В качестве одного из вариантов мы рассматривали Sulfolobus solfataricus, архею, которую впервые выделили из воды горячих источников вулкана Сольфатара рядом с Неаполем. Известно было, что ее клетки содержат CRISPR и что их поражают вирусы, обнаруженные Блейком в Йеллоустоне и на Камчатке, – что было удобно, поскольку Блейк был хорошо знаком с этими формами.

Другим “кандидатом” выступала кишечная палочка Escherichia coli, которую часто называют просто E. coli. Наиболее хорошо изученный на данный момент вид бактерий, E. coli подвержена заражению десятками одинаково хорошо изученных фагов, многие из которых можно просто заказать в интернете. (Также E. coli принадлежит честь быть первой бактерией, у которой определили последовательность CRISPR[59].) В дополнение к этому Блейк предложил Pseudomonas aeruginosa, патогенную бактерию, которая, как было известно, устойчива ко многим антибиотикам и несет в себе CRISPR. Мы знали, что сможем манипулировать ДНК P. aeruginosa, используя разнообразные инструменты генной инженерии, и что эту бактерию инфицируют многочисленные фаги (Блейк провел некоторое время в поисках новых фагов Pseudomonas, но не в экзотических местах вроде Йеллоустона, а на местных канализационных очистных сооружениях области залива Сан-Франциско).

Блейк четко дал мне понять, что он хочет сфокусироваться на изучении биохимии и структурной биологии во время работы в моей лаборатории, и ему не терпелось приступить к научной работе в новом направлении. Перед исследованиями CRISPR он очистил белки семейства Cas, закодированные в геноме P. aeruginosa, и стал проверять их на способность каким-либо образом распознавать или разрушать вирусную ДНК, начав с наиболее распространенного из них – белка Cas1. Затем (это было в 2007 году, примерно в то же время, когда Блейк начал работать в моей лаборатории) Джилл сообщила нам, что скоро будет опубликована важная статья исследователей из Danisco – датской биотехнологической компании и одновременно одного из ведущих мировых производителей пищевых ингредиентов. В своем исследовании они с помощью генетических методов показали, что CRISPR действительно представляет собой бактериальную иммунную систему[60] – хотя спектр ее возможностей на тот момент оставался неизвестным.

Предметом исследования ученых из Danisco была ферментирующая молоко бактерия под названием Streptococcus thermophilus, один из ключевых пробиотиков, используемых в производстве йогурта, сыра моцарелла и бесчисленного множества других молочных продуктов. Человечество поглощает существенно больше миллиарда триллионов клеток живых S. thermophilus в год, и годовая рыночная стоимость культур этих бактерий превышает сорок миллиардов долларов[61]. Вероятно, не стоит удивляться, что эти масштабные инвестиции в молочную промышленность постоянно находятся под угрозой фаговых инфекций – наиболее распространенной причины потерь продукции и неполного брожения. В одной капле сырого молока содержится от десятка до тысячи вирусных частиц, что делает полное уничтожение фагов в нем просто невозможным. Компании, подобные Danisco, пытались бороться с фагами, совершенствуя технологии очистки молока и оборудование фабрик, а также принимая другие меры, – но проблему так и удалось решить[62].

Работая совместно с Филиппом Хорватом и его командой из французского филиала Danisco, группа исследователей под руководством Родольфа Баррангу из американского филиала компании изучала S. thermophilus в попытках найти решение. Родольф и Филипп задумались над тем, что делает некоторые штаммы S. thermophilus более устойчивыми к фаговым инфекциям по сравнению с другими. В молочной промышленности уже начали применять линии мутантных бактерий, менее восприимчивых к бактериофагам, но Родольф и Филипп подозревали, что участки CRISPR в геноме S. thermophilus могут обеспечивать бактерии иммунитетом такого типа, что он окажется даже более сильным, чем случайные мутации у упомянутых штаммов.

Последовательности CRISPR у S. thermophilus, как было известно Родольфу и Филиппу, обладают определенными необычными свойствами, которые можно было бы использовать в экспериментальной работе. Александру Болотину удалось обнаружить некоторые из этих свойств, когда он секвенировал геном S. thermophilus; позднее Болотин сосредоточился на изучении ДНК CRISPR и в конце концов проанализировал более двадцати различных штаммов. В ходе этой работы он заметил, что, хотя повторяющиеся последовательности CRISPR (заштрихованные черным ромбики на рисунке Джилл) всегда были одинаковыми, спейсерные последовательности (пронумерованные квадратики на том же рисунке) у представителей разных штаммов заметно отличались. Более того, многие из этих спейсеров фактически совпадали с участками фаговых геномов, секвенированными незадолго до этого. (Результаты работы Болотина обобщены в одной из трех статей 2005 года, которые Джилл показывала мне в кафе Free Speech Movement.) Главный вывод из статьи Болотина таков: штаммы S. thermophilus, в CRISPR которых было больше таких спейсеров, оказались более устойчивыми к заражению фагами. Хотя было не особенно понятно, какое это имеет значение, казалось, что бактерии неким образом модифицируют свою ДНК в составе CRISPR, имитируя геномы определенных фагов и совершенствуя собственную иммунную систему – если предположить, что CRISPR является таковой, – чтобы эффективнее бороться с этими вирусами.

Основываясь на работе Болотина, Родольф и Филипп спланировали эксперименты для проверки этого предположения. Действительно ли штамм S. thermophilus способен повышать свою устойчивость к конкретному бактериофагу, вставляя себе в область CRISPR новые фрагменты ДНК, совпадающие с последовательностями ДНК этого фага?

В своих опытах исследователи из Danisco сосредоточились на штамме S. thermophilus, который широко используется в молочной промышленности, и на двух вирулентных фагах, выделенных из образцов фабричного йогурта. Основой методики послужили простейшие генетические эксперименты – подобные проводили с начала XX столетия. Ученые заражали популяции бактерий в отдельных пробирках двумя фагами, инкубировали их 24 часа, а затем проверяли, остались ли в этих культурах живые бактерии, высевая их в чашки Петри и оставляя их на ночь расти. Было обнаружено, что, хотя фаги уничтожили более 99,9 % бактерий, девять новых, мутировавших штаммов S. thermophilus, видимо, были устойчивы к заражению фагами.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Трещина в мироздании"

Книги похожие на "Трещина в мироздании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сэмюел Стернберг

Сэмюел Стернберг - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сэмюел Стернберг - Трещина в мироздании"

Отзывы читателей о книге "Трещина в мироздании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.