» » » Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать


Авторские права

Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Здесь можно купить и скачать "Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать" в формате fb2, epub, txt, doc, pdf. Жанр: Медицина, издательство Литагент Альпина, год 2021. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
Рейтинг:
Название:
Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
Издательство:
неизвестно
Жанр:
Год:
2021
ISBN:
9785001394006
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать"

Описание и краткое содержание "Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать" читать бесплатно онлайн.



Коронавирус появился неожиданным подарком под новый 2020 год и за несколько месяцев мир превратился в сериал-катастрофу. Невероятными усилиями государства остановили распространение вируса, но уже осенью эпидемия вновь стала набирать обороты. Что мы знаем о SARS-CoV-2, почему он убивает одних и бессимптомно проходит у других, безопасна ли вакцина и когда будет найдено лекарство, как мы лечим COVID-19 без него, можно ли бороться с патогеном, не закрывая планету, – книга отвечает на эти и многие другие вопросы. Хотя пандемия еще не закончилась, и мы все время получаем новые данные о вирусе, изложенные в тексте фундаментальные основы уже не поменяются: они служат каркасом, на который читатель сможет нанизывать новые знания.





Рис. 1. Множество вирусов есть у всех групп живых существ на планете – и даже у самих вирусов


Доказательство фантастической успешности вирусов – их зашкаливающее количество. И хотя точно подсчитать, сколько именно вирусов на планете, невозможно, согласно некоторым прикидочным оценкам{2}, только в океане примерно четыре нониллиона вирусов. Нониллион – это единица с 30 нулями. Представить настолько гигантское число очень трудно, но, например, наше Солнце весит два нониллиона килограммов. Обитают вирусы, разумеется, не сами по себе, а внутри живых организмов: на планете нет существ, которые не были бы освоены вирусами. Звери, птицы, растения, грибы, бактерии – и даже сами вирусы: у всех них есть множество собственных вирусов, вызывающих всевозможные патологии. Некоторые вирусы строго специфичны и поражают только один вид, другие не столь разборчивы и могут перескакивать с хозяина на хозяина, приводя к появлению новых болезней. Именно так произошло с SARS-CoV-2.

Глава 2. Как устроен коронавирус

Строение

Как мы выяснили в предыдущей главе, вирусы завоевали мир благодаря высокой скорости размножения и повышенной мутагенности. При этом, если главные конкуренты вирусов за планетарное господство – люди – осваивают новые территории при помощи разнообразных сложных технологических устройств, вирусы, наоборот, достигают своей цели за счет предельного упрощения, правда очень затейливого. Все до единого вирусные гены работают только на одну задачу – заселить как можно больше клеток и синтезировать максимально возможное количество вирусных частиц, которые, в свою очередь, будут инфицировать всё новые и новые клетки. Самые маленькие геномы у РНК-содержащих вирусов: рекордсмены минимизации вроде вируса гепатита D обходятся всего 1700 нуклеотидами (генетическими буквами). Для сравнения: в геноме человека больше 3 млрд пар нуклеотидов.

Геном коронавирусов тоже записан в молекуле РНК, однако они самые крупные представители этой группы: в среднем у них около 29 000 нуклеотидов. В геномной РНК SARS-CoV-2 29 900 нуклеотидов, и они кодируют 16 генов. Часть из них – гены, обеспечивающие синтез собственных белков вируса, остальные нужны для того, чтобы хакнуть геном клетки, заставив ее работать в режиме вирусной фабрики, а также для обмана клеточных защитных систем. Все эти «хитрые» гены и белки возникли в результате длительного сосуществования коронавирусов и их хозяев: каждая новая придумка паразита, облегчающая его проникновение в клетку или размножение, повышала шансы именно этой вирусной разновидности остаться в ходе эволюции. В результате такой позиционной войны виновник нынешней пандемии получился весьма хитроумным и коварным.


Рис. 2. Частица SARS-CoV-2 – ограниченная липидной мембраной сфера размером около 95 нм без учета торчащих наружу тримеров спайк-белка и 120–130 нм с ними. Внутри компактно упакована геномная РНК, намотанная на каркас из N-белка – в реальной вирусной частице она занимает внутреннее пространство почти целиком. SARS-CoV-2 не слишком похож на другие человеческие коронавирусы – геном ближайшего родственника SARS отличается на целых 20 %. Зато с одним из коронавирусов летучих мышей RaTG13 он схож на 96 %. Не исключено, что ученым удастся найти в рукокрылых еще более близкие вирусы, от которых мог произойти SARS-CoV-2


Хотя на первый взгляд так не скажешь. С виду SARS-CoV-2 устроен точно так же, как и множество других вирусов. Это сферическая частица со средним диаметром около 120 нанометров, покрытая многочисленными выростами. Утверждается, что благодаря им коронавирусы выглядят как маленькие короны (отсюда и название), но вообще-то куда больше они напоминают морскую мину – да и по смыслу морская мина ближе[3]. Крупные выросты образованы так называемым шиповидным белком, он же спайк-белок, или S-белок (от английского spike – шип). С его помощью коронавирус цепляется за клеточные белки-рецепторы, которые выступают далеко за поверхность клетки. Выросты помельче – это структурный M-белок (от английского membrane protein, мембранный белок). Есть еще E-белок (от английского envelope protein, белок оболочки), который почти совсем не выдается за пределы сферы. M-, S- и E-белки погружены в липидную (жировую) мембрану, которая отделяет внутренность вирусной частицы от окружающей среды. То есть фактически вирус – это пузырек, стенка которого образована липидными молекулами с вкраплениями белков. Причем мембрана у вируса не своя, а позаимствованная у предыдущего хозяина: синтез липидов – сложный многостадийный процесс, требующий множества ферментов, генов которых у паразита нет. Внутри пузырька находится вирусная РНК, намотанная на каркас из N-белка (от английского nucleocapsid protein, белок нуклеокапсида). И это всё.

Проникновение

Несмотря на такую аскетичность, вирусная частица SARS-CoV-2 имеет все необходимое, чтобы весьма эффективно проникать в клетки организма-хозяина. Главными воротами, через которые вирус попадает внутрь, являются рецепторы ACE2, или, по-русски, АПФ2, что расшифровывается как ангиотензин-превращающий фермент 2. Вместе с ангиотензин-превращающим ферментом 1 (АПФ1, или ACE) ACE2 входит в так называемую ренин-ангиотензиновую систему, которая регулирует кровяное давление. Никакого глобального смысла в том, что вирус цепляется именно за ферменты системы, ответственной за давление, нет: скорее всего, ACE2 стал мишенью вируса случайно в ходе многочисленных циклов адаптации паразита к клеткам хозяина.

Рецепторы ACE2 – трансмембранные белки[4], то есть они погружены в наружную клеточную мембрану, которая отграничивает клетки животных от окружающей среды. Они есть на клетках дыхательных путей, тонкого кишечника, стенок сосудов (эндотелия), яичек и некоторых других[5]. Это теоретически означает, что SARS-CoV-2 может проникать во все эти органы, и действительно, было установлено, что вирус умеет внедряться, например, в клетки кишечника и яичек. Но эти локации вирусу по каким-то причинам не нравятся: если он и размножается там, то не слишком активно, не вызывая развития серьезных патологических процессов. А вот в клетках дыхательных путей, и особенно в клетках легких, SARS-CoV-2 разворачивает бурную деятельность.

Коронавирус цепляется за выступающий над поверхностью клеток ACE2 при помощи своего S-белка. В связывании участвует не весь белок, а его наружная расширенная часть – ее называют S1-фрагментом. Непосредственно с рецептором взаимодействует RBD-участок (receptor binding domain – домен, ответственный за связывание с рецептором), который очень точно прилегает к ACE2, повторяя все его выемки и впадины. Ученые любят называть такое точное присоединение взаимодействием типа ключ – замок.

АЛЬТЕРНАТИВНЫЙ ПУТЬ

ACE2 – не единственный рецептор, прилипнув к которому SARS-CoV-2 может проникнуть в клетки. В марте 2020 года ученые обнаружили{3}, что этот коронавирус умеет цепляться за рецепторы CD147. Но вот загвоздка: CD147 почти не встречаются на поверхности клеток дыхательных путей. Зато этих рецепторов много на иммунных клетках, в некоторые из которых, как было показано группой исследователей из Китая и США{4}, вирус может проникать. Пока до конца не ясно, использует ли он при этом CD147 или, может быть, какой-то третий тип рецепторов. Но сама возможность вторжения коронавируса в иммунные клетки вызывает настороженность, потому что именно разбаланс иммунного ответа является основной причиной смерти от SARS-CoV-2. Впрочем, похоже, что проникновение в иммунные клетки – необязательный и уж точно не основной механизм патогенеза вируса. О том, как именно SARS-CoV-2 влияет на иммунитет, мы подробнее поговорим в главе «Что коронавирус делает с нами».

Самого по себе связывания с ACE2 уже достаточно для проникновения. Разумеется, не каждая вирусная частица, зацепившаяся за рецептор, сумеет попасть внутрь клетки, однако при существенном количестве вируса довольно у многих это получится. Но коварные вирусы придумали[6] дополнительный механизм, радикально увеличивающий шансы на проникновение: они используют сидящие в мембране протеазы[7] – ферменты, расщепляющие белки. Такие протеазы чрезвычайно важны для клетки, так как очень многие белки изначально синтезируются в виде полуфабрикатов – длинных аминокислотных цепей. Для того чтобы перевести такие заготовки в рабочую форму, их нужно разрезать в одном или нескольких местах – иногда чтобы откусить лишний хвостик, иногда потому, что свернуться в молекулы правильной формы могут только короткие цепочки. Множество таких протеаз находится в мембране большой внутриклеточной фабрики всевозможных полезных веществ под названием аппарат Гольджи. Но некоторые выносятся на внешнюю мембрану, вероятно для того, чтобы завершить процесс производства белков, которые активны на поверхности клетки или выделяются вовне, например, разнообразных сигнальных молекул. Еще часть протеаз оказывается на внешней мембране как побочный продукт внутриклеточной логистики – ферменты попадают туда в пузырьках с разными экспортными белками, регулярно поставляемыми из аппарата Гольджи.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать"

Книги похожие на "Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ирина Якутенко

Ирина Якутенко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать"

Отзывы читателей о книге "Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.