» » » » Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее


Авторские права

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Здесь можно скачать бесплатно "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
Рейтинг:
Название:
Открытие Вселенной - прошлое, настоящее, будущее
Издательство:
Юнацтва
Год:
1991
ISBN:
5-7880-0325-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Открытие Вселенной - прошлое, настоящее, будущее"

Описание и краткое содержание "Открытие Вселенной - прошлое, настоящее, будущее" читать бесплатно онлайн.



На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.






Для пояснения разницы можно использовать аналогию со снарядом, запущенным с Земли. Если начальная скорость не очень велика (не достигает второй космической скорости), то кинетической энергии снаряда не хватит на преодоление тяготения, и он упадет назад или превратится в искусственный спутник. Наоборот, при достаточно большой скорости он будет (без учета влияния других тел Солнечной системы) неограниченно удаляться от Земли. При использовании этой аналогии важно только помнить, что разбегание галактик связано с расширением самого пространства, тогда как «разбегание снаряда и Земли» рассматривается в обычном Ньютоновом пространстве…

Сделать окончательный выбор между двумя вариантами горячего или холодного будущего очень трудно — точность измерения Н и, следовательно, ½кр невелика. Но еще сложней оценить наблюдаемую плотность. Совсем еще недавно данные сводились к (совр. ~ (2?5).10–31 г/см3, то есть Вселенная скорее соответствовала открытой модели. Однако эта плотность оценивалась преимущественно по запасам звездного вещества в галактиках. Считалось, что реликтовый фон фотонов и нейтрино дает вклад в плотность массы на 3 порядка меньше, и этим вкладом фактически можно пренебречь.

С открытием массы нейтрино ситуация может резко измениться. Если число нейтрино, приходящихся на один протон, сохранится на уровне одного миллиарда, то окажется, что в современную эпоху именно нейтрино дают основной вклад в массу Вселенной, и наблюдаемая плотность подскочит до критической черты[109]. С другой стороны, немалая доля массы должна быть сосредоточена в темных объектах — выгоревших звездах. Особые надежды возлагаются на черные дыры, которыми могли завершить свой путь многие звезды первого поколения. Систематическое обнаружение такого рода объектов опять-таки позволило бы поднять оценку наблюдаемой плотности. Но, как мы видели в главе 6, независимо от природы скрытой от наблюдения массы, ее уже обнаружили, и ее плотность, скорее всего, в десятки раз превышает ½совр.

Вообще, наметившаяся тенденция такова, что экспериментальное значение «константы Хаббла» (а значит, и критической плотности) систематически снижалось — в 10 раз за 50 лет! — а оценка средней плотности росла за счет обнаружения новых объектов или новых свойств. Поэтому сейчас закрытая модель с горячим финалом Вселенной представляется наиболее вероятным итогом исследований.

Обобщением закрытой модели является так называемая пульсирующая (или осциллирующая) Вселенная, где циклы расширения и сжатия бесконечно повторяются. Вселенная каждый раз возрождается из Сингулярности и, прожив несколько десятков миллиардов лет, гибнет в ней: что-то вроде буддийских эр, не так ли?

На самом деле выбор между одним или несколькими циклами существования Вселенной может иметь экспериментальный смысл лишь в том случае, если Сингулярность — нечто более сложное, чем в стандартной модели. Иными словами, она должна хоть что-нибудь пропускать из одной эры в другую, скажем, определенный тип элементарных частиц. Было бы очень приятно обнаружить в современном мире следы иных циклов и убедиться, что хоть какие-то объекты способны пережить Большой Взрыв. К сожалению, пока на это нет никаких указаний…

Однако изучение и очень раннего прошлого и финиша в закрытой модели показывает, что именно в Сингулярности кроются наиболее принципиальные проблемы современной космологии.

Сингулярность — классические проблемы

В сущности, Сингулярность, и с физической и с философской точки зрения, объект неудовлетворительный. Мир с бесконечной плотностью материи, стиснутый в одну единственную точку, — сугубо математическая абстракция. Скорее всего, Сингулярность отражает наше незнание истинных законов эволюции в моменты, близкие к Первовзрыву.

Глубокие теоретические исследования последних десятилетий показали, что Сингулярность в рамках эйнштейновской теории тяготения неизбежна — она содержится в общих решениях уравнений классической теории гравитации, а не является следствием каких-либо чрезмерных ее упрощений.

Одно время была надежда, что сингулярное состояние возникает просто из-за неаккуратного описания вещества. Ведь гипотеза о том, что в очень ранние моменты оно представляет собой идеальный релятивистский газ, отнюдь не самоочевидна. Оказалось, что учет так называемой объемной вязкости[110] действительно позволяет убрать Сингулярность. Можно даже представить дело так, что вся эволюция Вселенной выглядит как переход между двумя состояниями с постоянными и вполне конечными плотностями материи в начале и в конце.

Такая точка зрения легко бы вытеснила представления о Сингулярности, если бы за ее торжество не приходилось платить непомерную цену. Дело в том, что само предположение о выдающейся роли объемной вязкости в начальной фазе сверхгорячего вещества очень трудно оправдать данными о вязких средах. То, что вязкость может выйти на первый план в поздние космологические эпохи и даже определить будущее Вселенной, гораздо правдоподобней. Не слишком сильным, но приятным утешением для программы вязких моделей служит вытекающее из них предсказание, что благодаря почти незаметной в начале вязкости открытая Вселенная должна в далеком будущем перейти в стационарный режим с постоянной и, возможно, не слишком малой плотностью вещества.

Однако главным тормозом на пути такого рода борьбы с Сингулярностью оказались так называемые анизотропные модели.

Изотропия (равноправие всех трех направлений в пространстве) принята в стандартной фридмановской картине просто на основе того факта, что наблюдаемые на больших расстояниях галактики распределены равномерно по всем направлениям. Изотропно, согласно современным данным, и реликтовое излучение. Значит, можно предположить, что, по крайней мере, с момента отрыва излучения выделенных направлений не было. Но сохранялось ли такое положение вплоть до Сингулярности — вот в чем вопрос!

А вдруг непосредственно после Первовзрыва Вселенная была резко анизотропной, и за какие-то доли первой секунды следы неэквивалентности направлений затерялись? Уравнения Эйнштейна или какие-то общие соображения такую возможность вовсе не исключают. Ясно, что она не самая простая, но простота — не тот аргумент, когда речь идет о весьма серьезном обобщении.

Отнюдь не обязательно, чтобы пространство вышло из точки сразу в привычной 3-мерной форме, одно или два независимых направления в нем сначала могли быть заметно подавлены. Это порождает очень интересные и глубокие исследования ранней Вселенной, даже независимо от несколько фантастической гипотезы эволюции размерности физического пространства.

Анизотропия начисто забивает сколь угодно сильную вязкость в пределе t (0, и Сингулярность восстанавливается. Именно с помощью анизотропных моделей удалось выяснить характер общих решений эйнштейновских уравнений в самые ранние моменты и показать, что особая точка из них не устраняется. Это в какой-то степени возвращает проблему Сингулярности к исходным позициям, однако с очень важным дополнением, судя по всему, решить ее в рамках классической теории гравитации вообще нельзя.

В свою очередь, анизотропный подход породил серьезную физическую проблему — в лабораторных экспериментах ничего подобно неравноправию пространственных направлений пока не наблюдалось. Не исключено, что никаких современных проявлений анизотропии пространства измерить нельзя ни в галактических, ни тем более в земных масштабах. Информация о ней может быть запечатана лишь в реликтах самых первых мгновений, скажем, в гравитационном излучении эпохи Первовзрыва. В таком случае мы столкнулись бы с чисто космологическим законом физики, практически не играющим роли в меньших масштабах.

Нечто специфически космологическое использовалось теоретиками и раньше. Сам Эйнштейн строил в 1917 году первые космологические решения своей теории в виде статического распределения вещества в пространстве положительной кривизны. Для этого ему пришлось дополнить свои уравнения, вводя в них особую размерную константу (так называемый «космологический член» или «λ — член»). Фактически с этой константой в физику должна была войти новая сила отталкивания, не имеющая аналогий в ньютоновском законе тяготения и заметная только в космологических масштабах. Эйнштейн сам характеризовал это обобщение, как «неоправдываемое нашими действительными знаниями о гравитации».

Его решение описывало в среднем вечный и неизменный мир, где вообще не было никаких неприятностей, вроде Сингулярности. То, что этот мир скучен, а λ — член выглядит искусственно, полбеды. Хуже другое — в нем нет эффекта Хаббла, и он неустойчив по отношению к самым малым возмущениям. Любое такое возмущение неизбежно подтолкнуло бы его к сжатию или расширению, независимо от наличия или отсутствия λ — члена. Поэтому модели Фридмана и Лемэтра практически без боя вытеснили статическую модель[111].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Открытие Вселенной - прошлое, настоящее, будущее"

Книги похожие на "Открытие Вселенной - прошлое, настоящее, будущее" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Потупа

Александр Потупа - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее"

Отзывы читателей о книге "Открытие Вселенной - прошлое, настоящее, будущее", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.